Basic Issues in Microprocessor Architecture

Michael J. Flynn
Computer Systems Laboratory, Stanford University

Abstract

The evolution of microprocessor architecture depends upon the changing aspects of
technology. As die density and speed increase, memory and program behavior become
increasingly important in defining architecture tradeoffs.

While technology enables increasingly complex processor implementations, there are
physical and program behavior limits to the usefulness of this complexity. Physical limits
include device limits as well as practical limits on power and cost. Program behavior limits
result from unpredictable events occurring during execution. Architectures and implemen-
tations that span these limits are vital to the continued evolution of the microprocessor.

Keywords: microprocessor architecture, scaling, memory wall, cache limits, program
behavior limits.

Successful microprocessor implementations depend upon the processosr architect’s ability to
predict trends and advances in both technology and user behavior. Selecting an approach for a
microprocessor implementation depends on the architect’s ability to correctly model the effect
of new technologies, new applications, and new software and CAD tools. The most successful
microprocessor implementations depend not simply on the use of the current state of the art
in hardware algorithms, but more importantly in bringing together the knowledge of these
algorithms together with projected advances in the technology and user state of the art.

This note reviews some of the changing technology tradeoffs, and considers them in light of
developments in algorithms, user behavior, and systems cost.

1 The Role of Scaling in Microprocessor Architecture

The implementation technology of choice for microprocessors is CMOS. Improvements have
been and continue to be made in reducing feature size. The smallest feature size generally
corresponds to a dimension of the primary feature of a transistor device as implemented. This
is sometimes called the drawn feature size. This feature size, f, 1s limited by mask resolution
and the wavelength of the (ultraviolet) light used in the lithographic process to generate the
device definition. The movement to ever smaller device dimensions implies that significantly
more devices can be implemented on a given silicon area. While current implementations use
feature sizes of about f = 0.25u, it is projected that devices with feature sizes smaller than
0.1y can be available in the next few years. See Table 1 [11] for the Semiconductor Industry
Association (STA) projections on device characterizations for the next few years.

For an architect, there are important implications to scaling. As feature sizes shrink, the
area a device occupies shrinks as the square of the scaling factor. If the feature size is reduced
by a factor of 2, a device need only occupy one quarter the area using the reduced feature size.

Journal of Systems Architecture’99 2

Table 1: 1994 STA roadmap summary.

Year of 1st DRAM Ship 1992 | 1995 | 1998 | 2001 | 2004 | 2007
Feature Size (p1) 0.50 | 0.35 | 0.25 0.18 | 0.13 | 0.10

Voo (V) 50 | 33 | 25 | 18 | 15 | 1.2
Trans/Chip 5M | 10M | 20M 50M | 110M | 260M

Die Size (mm?) 210 | 250 300 360 430 520

Freq (MHz) 225 | 300 450 600 800 1000

DRAM Bits/Chip 16M | 64M | 256M 1G 4G 16G
SRAM Bits/Chip 4M | 16M | 64M | 256M 1G 4G
Maximum power /chip (watts) | 60 80 100 120 140 160

On the other hand, device speed is improved linearly with feature size. Thus, a reduction in
feature size of a factor of 2 may (under constant field assumptions) also reduce the device delay
by a factor of 2. Local interconnection delay, however, does not scale by the same factor. To
interconnect two points in a fixed design shrunk by a factor of S on a side, the interconnect
lengths will also be reduced by a factor of S (i.e., will shrink linearly). The RC delay per
unit length associated with that interconnection will actually increase because of the reduced
dimensions associated with the interconnection line. In an effort to mitigate this somewhat,
most modern designs change the aspect ratio of the interconnection, as the wire size itself is
shrunken [7]. That means that instead of both the thickness and the width of the line shrinking
by the scale factor S, the thickness of the line may actually increase while the width of the line
is shrunk by S. This changing of aspect ratio partially mitigates the effect of increasing RC, but
certainly not completely. Thus, as scale factors reduce device sizes by 1/5% and reduce device
delays by 1/.5, interconnection delay between two points within a design is reduced only slightly.
All this leads to designs that are interconnection limited.

For purposes of this discussion, we assume that global interconnections are used for interfunc-
tional unit interconnections, and not used for interconnections within a functional unit. Since
cycle time and other basic parameters are largely determined by transit times or delays within
a functional unit, for this discussion we assume that global interconnections (which may indeed
scale as 1/.5) have little direct effect on cycle time considerations and delays within functional
units.

2 Implications of Scaling Feature Size

2.1 Cycle time

STA projects (Table 1) that, as feature size decreases, clock rates increase at a somewhat slower
rate than we have seen in the past. This is because of the lack of linear scaling of local intercon-
nects. Increasingly, functional unit designs are dominated by line delays, and not circuit delays.
This may cause designers to rethink their selection of algorithms to implement various functional
units. Implementations that use larger numbers of devices or larger number of devices in critical
paths, yet offer more regular layouts, reducing local interconnection delays, may be preferable
to older implementations that stressed reduction of the number of gate delays in critical paths.

Journal of Systems Architecture’99 3

Still, we are not limited in our ability to create fast cycle times. Indeed, it appears that some
current processor implementations are producing more aggressive cycle times than what would
be projected by the SIA roadmap. Indeed, logical techniques such as wave pipelining, which
uses sophisticated CAD tools to ensure balanced path delays, can be used to improve cycle time.

Wave pipelining is based on the use of delay inherent in combinatorial logic circuits. Suppose
a given logic unit has a maximum interlatch (clocked latches) of Ppax and a corresponding
minimum delay of Ppi, with clock overhead (setup, hold, skew, etc.) of C'. Then the maximum
achievable cycle time, Af, is
At = Prax — Poin + C.

As with conventionally clocked systems, the system clock rate 1s the maximum At; over ¢ latched
stages.

In practice, using special CAD tools [13], it is possible to arrange Ppin to be within about .8 to
.9 of (Ppax+C). While this would seem to imply clock speedup of more than 5x, environmental
issues (process variation, temperature gradient across a die, etc.) limit realizable clock rate
speedup to about 3x [8].

As we will see later, cycle time is probably less important in processor implementations in
the future than it has been in the past.

2.2 Memory Access Time

As feature sizes shrink, memory designers have aggressively improved device density on chip and
memory capacity per chip. For a single memory array, as array size increases, the interconnect
line must span a larger number of devices. Since not all interconnections can be global, the access
delay tends to be limited by local interconnects. Typically, the average access time has remained
relatively constant as memory chip capacities have increased due to scaling of interconnects.
Since processor cycle times have generally scaled with shrinking feature size, and memory access
time has remained relatively constant, there is increasing pressure on the memory hierarchy—
the cache and buffering subsystem—to compensate for the increasing number of processor cycles
required to access memory on a line miss.

There are several responses to this problem on the part of the memory designer. The first is
to design the memory chip so that it consists of not one array, but perhaps four (or n) arrays.
Within each array, then, it may be possible to achieve some scaling advantage for improving
access time. These “by n” designs can also be coupled with a second improvement. Since
memory is usually implementated as a square array of cells, when access is made to a row of
cells; rather than simply accessing a simple column bit as an output, one can rapidly move a
sequence of bits starting at the originally accessed bit by temporarily storing the accessed row
and making it available for fast sequential access mode.

Neither of these techniques significantly improve the memory access time. The first technique
may improve the relative access time (as measured in processor cycles) to a memory cell slightly.
The second technique transfers cache lines more rapidly from memory to cache.

2.3 The Memory Wall

As processor speeds increase, the ratio of memory access time to process cycle time increases.
The problem is compounded by the execution of multiple instructions in a single cycle. Suppose

Journal of Systems Architecture’99 4

we define the logical memory latency as the maximum number of instructions that are executable
in a memory access time.

The logical memory latency has significantly increased as processor cycle time improves and
processors use enhanced instruction level parallelism. There is a maximum logical memory
latency beyond which an application sees no performance advantage. In one form or another,
this notion of a memory bound to processor performance has been referred to as the memory
wall [10, 14]. Tt has been described as a latency or a bandwidth limitation of memory.

Using large cache sizes to avoid the memory wall is limited. For large caches at least, in
order to reduce the hit rate, one is naturally inclined towards using large line sizes. Large line
sizes increase the bandwidth required of memory. Burger [1] shows that there is a significant
opportunity to increase effective pin (and memory) bandwidth between one and two orders of
magnitude by making better use of on-chip memory. The basis for this improvement is adapting
the cache organization (line size, associativity and write policy) to the application. The most
important lesson is that large caches blindly implemented (without reference to the application)
are not a solution to processor performance.

2.4 Cache Limits

Small feature sizes coupled with rather larger die size enable large (> 1 MB) on-chip caches,
but these caches are limited in two ways:

1. Large caches cannot be accessed at the fast processor cycle times (e.g., At & 1 nsec).

2. Applications limit the effectiveness of large caches.

McFarland [7] has proposed an access time model for caches with feature size f in microns,
size C' in Kbytes, and associativity A as (approximately):

Access time (ns) =(0.35+ 3.8f + (.006 + .025f)C') « (1 +.3(1— 1/A3)) :

At f = 0.1y, we expect cycle time (At) to be 1 nsec (Table 1). The cache model [7] suggests
that at f = 0.1u, we could have a maximum cache size of

o 3258 direct mapped, with access time 1 ns (one cycle).

e 12855 direct mapped, with access time 2 ns (two cycles).

The cache access in a processor cycle time problem can be managed with multiple levels of
on-chip cache. At f = 0.1y, one might argue for even three levels of on-chip cache. The designer
can have the area (for large caches) or the access time (to match fast cycle times), but not both.

Notice that when feature sizes were greater than 0.5u, cache sizes were generally limited by
chip area. At f = 0.1y, chip sizes are limited by cycle time as interconnect delays dominate
the cycle time. The obvious alternatives are multicycle cache access times and relatively larger
cache sizes, or small cache sizes coupled with multilevel on-chip cache.

While it 1s relatively easy to improve cycle time, the advantage of such tmprovements are
limited. Since memory access time does not scale with processor cycle time, increasingly pro-
cessors become memory limited. The technology to bridge this speed difference involves multiple
levels of cache, but cache can be limited by exactly the same interconnection limitations that limit
memory, forcing fast caches to be relatively small and forcing the architect to use multiple levels
of on-chip cache to attempt to match the memory access time with the processor cycle time.

Journal of Systems Architecture’99 5

3 Power and Power Density in Microprocessor Architec-
ture

Chip power and systems power play important roles in determining both cost and performance
of a microprocessor implementation. The SIA roadmap points to increasingly higher power for
microprocessor chips. This implies a return to older mainframe and supercomputer type of
cooling technology, with heat exchanges or liquid immersion.

At a device level (or with scaling on a power-density basis), the power is

P

_ CV?(freq)
= 5 ,
where C'is the device capacitance, V is the voltage and (freq) is the frequency of operation of
the device.

If we lower the frequency of an existing design, we scale the power linearly with frequency.
However, there 1s an important distinction for scaling power between the existing design and a
new design—a power optimized design in which the frequency 1s reduced to optimize total power
consumption. A simplistic way of understanding this difference is to imagine that we took
an existing design that has been optimized for frequency and we modify that design simply by
changing the circuits so that they could operate at half the voltage. This has the effect (to a first
order) of also having the frequency, but the resultant design would reduce the power by the cube
root of the original power. While this analysis is simplistic, as reduced power implementations
rarely just halve the voltage, empirically it seems that power optimized designs (operating with
power P; and frequency freq.;) in fact can be characterized by a cube root law:

freq, 3 Py

freq, VP

For example, if we increase the power (Pr) by 8x (over Pp), we expect to double the clock
frequency.

Power optimized implementations differ from performance optimized (power P, and fre-
quency freqs) implementations in a number of ways: the implementations use less chip area not
only because of less requirements for power supply distribution and clock distribution, but more
importantly because of reduced performance targets. In performance oriented microprocessor
designs, a great deal of area is consumed in achieving marginally improved performance—very
large floating point units, or maximally sized caches.

Power optimized designs become increasingly tmportant in any type of battery powered or
portable implementations. As this is an tmportant growth area for microprocessors, area opti-
maization and power optimization are closely related. The understanding of this relationship and
architectures which satisfy various optimization criteria are an important issue moving forward
m microprocessor architecture.

4 Limits on Scaling

Somewhere below f = .10y, probably at feature sizes greater than f = .05, there are physical
barriers to simply scaling CMOS circuits as we have done over the past decade.

Journal of Systems Architecture’99 6

There is an obvious concern with both the cost and difficulty in simply providing the lothog-
raphy to realize devices below .104 in size. That structures can be produced with these sizes is
not in question, but the cost of doing so has been raised as a limitation on the ultimate feasibility
of doing so.

Additionally, there are other problems which arise in this same region [7]. Very thin oxide
layers (the oxide scales with the device size) and very small channel widths may compromise
the long term stability of some of the dielectric materials and some of the device structures
themselves. Additionally, very small structure sizes may result in unacceptable ratios of on—off
current values. Similarly, scaling voltages down to one volt or below may prove difficult or
impossible; since it requires that the switching threshhold voltage must also be scaled and this
value also be maintained as a reasonable constant during the device performance. Over the
years, device engineers have gotten around many problems, some as formidable as the above.
The argument here is not that these limits will impose fundamental realization limits on devices,
but rather that the scaling laws and the way architects have anticipated changes in technology
may have to be completely reexamined based on the solutions that the device engineers come
up with at this point.

Some of their problems can be avoided, for example, by maintaining very low junction tem-
peratures across the chip (cool CMOS). Devices chilled to liquid nitrogen temperatures are
known to have significantly enhanced performance. Similarly, devices operating in the sub-
threshhold region (always cut off) use extraordinarily low currents and have therefore low power
operation. This is the same technology that is used in microprocessor-based watch implemen-
tation, where the total power consumed 1s on the order of microwatts. Of course, operating in
the subthreshhold region usually involves what we now think of as extraordinarily slow cycle
times—on the order of perhaps 10 Mhz.

Quer the years there have been a consistent number of predictions and projections that would
point to fundamental limits beyond which our familiar silicon-based technology could not go.
Fach time, however, technologists have been able to engineer their way around these limitations,
moving ahead to new limits. Physical limits again approach in the so-called deep sub-micron
region (somewhere between .05u and 0.10p). The architect must realize that as these limits are
approached, the technologist may make compromises or changes that are not a direct scaling of
our current technology. Changes like this, «f and when they occur, are important challenges to
the processor architect to quickly understand the implications of the changes and then to use
these changes to best advantage.

5 Program Behavior Limits

It is generally, but not always, true that processors with faster cycle times provide better overall
performance. Consider the case of a simple pipelined processor.

For these simple pipelined processors, an estimate of the optimum number of stages in a
pipeline has been determined [3] as Sopt:

(1-b)T

Sopt == bC . (1)

The b term represents the fraction of instructions that cause a pipeline “break” of duration

T.

Journal of Systems Architecture’99 7

The ratio C'/T' is simply clocking overhead (C') per cycle as a fraction of total instruction
execution latency (7).

If we make the cycle time too large and have too few stages in the pipeline, we sacrifice
overall performance. On the other hand, if we make the cycle time too small, we incur increasing
amounts of clock overhead and we suffer from additional long pipeline breaks.

One can imagine an analogous equation to describe the selection of a optimum level of ILP,
ILPp:

1—d) 1
ILPp; A~ %.5. (2)

This relationship is developed strictly as an analog to Sgpt in equation 1 as the exact form of
ILP,p; depends on the underlying processor architecture assumptions. Here, O is the overhead
of adding another instruction to an ILP machine as a fraction of the total instruction execution.
It is assumed that O is constant for each additional instruction added. The parameter d is the
fraction of occurrence of significantly disrupting events (akin to a misguessed branch) which
causes the ILP machine to have to restart with a new instruction count. The tradeoff between
VLIW and superscalar machines [2] is simply the tradeoff between reducing overhead with a
VLIW machine and potentially finding potential parallelism and hence reducing the disruption
with a superscalar machine. As before, latency tolerance reduces for all organizations d, the
probability of a disruption, and hence improves the ILP available.

For either processor approach (fast At or increased ILP), the performance is bounded by
implementation overhead and program behavior. We can use our understanding of algorithms
to advance both of these limits.

Non-predictable events, whether they be mispredicted branches, data dependencies, limited
ILP, or resource contention, provide a strong limit to what the architect can do in designing
a processor. Attempting to push these limits upward and improve performance is very diffi-
cult. Improving the prediction rate for branches over a simple history bit based scheme is ex-
tremely difficult and costly [15]. A great deal of addiitonal die complexity must be introduced to
even marginally improve the prediction rate of branches or to accommodate dependencies across
branches.

There has been recent discussion of the possibilities of making the ILP more visible to the
software for better management. This is historically a reasonable approach, especially when
the architect is in danger of overwhelming the performance of the processor with compler and
perhaps marginally valuable hardware. It s a slippery slope when one overreaches and segments
the pipeline beyond Sopr or attempts to create an ILP greater than ILP.p.. The designer can
have the worst of all worlds: poor performance and very high cost.

Simplifying the hardware and placing the responsibility of achieving high levels of concur-
rency on the software is a reasonable alternative. Several generations of very successful vector
processors are based exactly on this principle. Indeed, it may well be that the vector architec-
ture, long the backbone of mainframes and supercomputers, may have a role in microprocessor
architectures. The emergence of “MMX” instructions with a type of subword parallelism is in
fact a simple form of vector instructions oriented to a particular application. Of course, the
limitations of vector processors are well known. The speedup is rather limited (perhaps to twice
a pipeline processor), and the memory accessig problems can be formidable. But surely no worse
than any other type of highly concurrent processor.

Journal of Systems Architecture’99 8

Multiprogramming level = 10
Line size = 16 bytes

—#— 100
—— 1K

—4— 10K
—2&— 20K
—®— 100K

Miss rate

o Single user
plus op.sys.
effects

—&— Design target
miss rate [14]

10 100 1K 10K 100K M
Cache size

Figure 1: Miss rate for a warm cache with ten tasks (MP = 10).

Ultimately, the effectiveness of cache is heavily dependent on the application. In an applica-
tion consisting of a large number of small transactions, a system cannot effectively use a large
cache, as before the cache fills, the transaction is complete and the application moves on to an-
other process. The number of instructions between a task switch (@) has been used as a measure
of stability or latency tolerance of an application [12]. Figures 1 and 2 [4], show two multitasked
environments, one where control is never returned to a task (a cold or transaction environment),
and another where, in high degrees of multiprogramming applications, control does return to
an application (this is called a warm cache environment). If applications are indeed latency
tolerant, then high degrees of instruction issue and large caches make a great deal of sense. If
applications are latency intolerant, such as a transaction or a highly multitasked environment,
then the systems become completely memory limited, and the exact processor organizational
details are not significant.

It is exactly in the server area where performance is at a premium that we frequently en-
counter a transaction type environment. If we are simply multiprogramming, there may be a
solution in either multithreaded multiprocessors on chip, or simply multiple processors on chip
where each processor assumes management of a small number of tasks or threads. On-chip mul-
tiprocessing [9] may offer designers an interesting alternative to ILP in improvement in overall
systems performance.

6 Cost

The last basic tradeofl exists in determining an optimum die size [4]. A die yield is a function
of both defect density (pp) and the die area, A. In a simple Poisson model, the yield is

Yield = e~rr4

Journal of Systems Architecture’99 9

0 16-byte line, 4-way associative

10 0

100
1000
10000
20000
100000

BREREE

Miss rate
[y
o

Single user
plus op. sys.
Design target
miss rate

t oD

10_2 rorrTTT T rorTTTT rorTrTT T

10t 102 10° 10* 10° 10°

Cache size (bytes)

Figure 2: Miss rate for a cold-start cache including system activities.

and the number (N) of die per wafer (diameter d) is

nd?
N=—.
4A
If Ny is the number of good chips, then
N,
Yield = =2,
ie ~

A typical defect density is about one defect per square centimeter. Die cost 1s determined by
dividing the wafer cost by the number of good chips realized on the wafer. As die area increases,
both the total number of chips on the wafer decrease, and the number of good chips decreases
as the yield decreases.

An increase in die area of 2 can easily lead to an increase in die cost of 10. Since there
is a fixed packaging testing cost associated with each die, making a die very small does not
significantly decrease overall packaged die costs; indeed, having too little functionality on the
packaged die decreases the attractiveness of the part to the buyer. This decreases the production
run of the part and increases costs. Currently, most processor dies have area between 1.0 and
3.0 cm?.

The element of cost creates a cleavage in processor designs. In what can be termed the
server market, the processor may be a relatively small component in a much more costly system
dominated by costs of memory and storage, etc. In this design area, an increase in processor
cost of ten times (from, say, die cost of $10 to dies cost of $100) may be not very significant in
the overall systems cost.

Most processor implementations are more cost sensitive. These processors we could term

client processors, and include processors devoted to end-user applications—embedded processors,
personal computers and network computers. For these processors, the optimum use of area is

Journal of Systems Architecture’99 10

very important. As technology and costs allow, there will be an increasing need for increasing
functionality within the processor so as to incorporate various signal processing (multimedia
and graphics) and memory functions that now are assigned to separate chips. This notion of a
systems chip is very important in future microprocessor architectures.

Server processors will continue to be enhanced with signal processing capability (multimedia,
ete.) but the server processor is never an ideal basis for the client processor, since it has not
wnttially made the same cost tradeoffs that must be made for an optimum client implementation.
This is especially true in the area of power and the inclusion of items of marginal performance
enhancement. Ultimately, the client processor is the systems chip, however. The system or client
chip is not simply a processor plus a variety of signal processors plus memory; it must be a care-
fully crafted processor with signal processing capabilities wherein those capabilities are carefully
adapted and adaptable to various application requirements during the course of execution of a
workload.

Conclusion

As technology scales, there are important new opportunities for microprocessor architects. The
simple traditional measures of processor performance—cycle time and cache size—are becoming
increasingly meaningless in correctly evaluating application performance. Some of the most
significant challenges facing the microprocessor architect now include:

1. Creating high performanc eprocessors jointly or cooperatively with enableing compiler soft-
ware. Whether the resultant architectures are vector processors, VLIW, or other type, it
is important that the processors really deliver the specified performance across a spectrum
of applications.

2. Not explicitly discussed in this paper, but of great importance, is attention to features
that preserve the integrity of computation, reliability, and diagnostic features.

3. The increasing use of adaptability in various processor structures such as cache and signal
processors. For example, an adaptive cache would not just simply prefetch, but would
prefetch according to a history of accessing behavior on the part of the particular program.
Similarly, we could see adaptability in arithmetic, where arithmetic functional units can
be redefined, perhaps with the assistance of FPGA elements in function and performance
to suit various applications.

Microprocessor architecture promises to be as exciting in the future as it has been in the
past.
Acknowledgements

Some of the ideas expressed in this paper have been previously presented in conferences [5, 6].
This research was supported in part under NSF Grant MIP93-13701.

Journal of Systems Architecture’99 11

References

[1] D. Burger, J. R. Goodman, and A. Kagi. Memory bandwidth limitations of future micro-
processors. In Proceedings of ISCA’96, pages 78-89.

[2] M. Butler and Y. Patt. An investigation of the performance of various dynamic scheduling
techniques. In Proceedings of MICRO-25, December 1992.

[3] P. K. Dubey and M. J. Flynn. Optimal pipelining. Journal of Parallel and Distributed
Computing, 8:10-19, 1990.

[4] M. J. Flynn. Computer architecture: Pipelined and parallel processor design. Jones and
Bartlett, Boston, 1995.

[6] M. J. Flynn. “What’s Ahead in Computer Design?” Invited keynote. In Euromicro’97
Proceedings, pages 4-9, Budapest, September 1997.

[6] M. J. Flynn. “Time and Area Optimization in Processor Architecture.” Invited keynote. In
Proceedings of ARCS’97, pages 1-9, Rostock, Germany, September 1997.

[7] G. McFarland. CMOS technology scaling and its impact on cache delay. PhD thesis, Stanford
University, 1997.

[8] Kevin Nowka. High performance CMOS system design using wave pipelining. PhD thesis,
Stanford University, August 1995.

[9] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang. The case for a single
chip multiprocessor. In Proceedings of ASPLOS VII, pages 2-11, October 1996.

[10] A. Saulsbury, F. Fong, A. Nowatzyk. Missing the memory wall: The case for proces-
sor/memory integration. In Proceedings of ISCA’96 pages 90-100.

[11] Semiconductor Industry Association. The National Technology Roadmap for Semiconduc-

tors. San Jose, CA, 1994.
[12] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, September 1982.

[13] D. Wong, G. De Micheli and M. Flynn, “Algorithms for Designing High-Performance Digital
Circuits Using Wave Pipelining,” TEEE Transactions on CAD/ICAS, pages 25-46, January
1993.

[14] W. Wulf and S. McKee. Hitting the memory wall: Implications and the obvious. ACM
Computer Architecture News vol. 13 no. 1, March 1995.

[15] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In Proceedings
of the 24th Annual International Symposium on Microarchitecture, pages 51-61, November
1991.

Journal of Systems Architecture’99 12

Michael J. Flynn is professor of electrical engineering at Stanford University, where he founded
the Computer Emulation Laboratory, which has been a leading facility for the analysis of com-
puter architecture. Current research projects include programs on ultra-high-speed arithmetic
performance, rapid evaluation of computer architectures, and parallel machines.

Dr. Flynn has served on the IEEE Computer Society Board of Governors and as Associate
Editor of the Transactions on Computers. He was founding chairman of both the ACM Special
Interest Group on Computer Architecture and the IEEE Computer Society’s Technical Commit-
tee on Computer Architecture. He was the 1992 recipient of the ACM/IEEE Eckert—-Mauchly
Award and in 1995 received the IEEE-CS Harry Goode Memorial Award.

Flynn worked at IBM for ten years in the areas of computer organization and design. He was
design manager of prototype versions of the IBM 7090 and 7094/11, and later for the System 360
Model 91 CPU. He received his Ph.D. from Purdue University in 1961 and holds an honorary
D.Sc. from Trinity College, Dublin.

