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PREFACE

About UPC

Many have contributed to the ideas and concepts behind the UPC language. The

initial UPC language concepts and specifications were published as a technical

report authored by William Carlson, Jesse Draper, David Culler, Katherine Yelick,

Eugene Brooks, and Karen Warren in May 1999. The first UPC consortium meeting

was held in Bowie, Maryland, in May 2000, during which the UPC language

concepts and specifications were discussed and augmented extensively. The UPC

consortium is composed of a group of academic institutions, vendors, and govern-

ment laboratories and has been holding regular meetings since May 1999 to

continue to develop the UPC language. The first formal specifications of UPC,

known as v1.0, was authored by Tarek El-Ghazawi, William Carlson, and Jesse

Draper and released in February 2001. The current version, v1.1.1, was released in

October 2003 with minor changes and edits from v1.0. At present, v1.2 of the

specifications is in the works and is expected to be released soon. v1.2 will be a

publication of the UPC consortium because of the extensive contributions of many

of the consortium members. v1.2 will incorporate UPC v1.1.1 with additions and

will include the full UPC collective operations specifications, v1.0, and the I/O

specifications v1.0. The first version of the UPC collective operations specification

was authored by Steven Seidel, David Greenberg, and Elizabeth Wiebel and

released in December 2003. The first version of the I/O specification was authored

by Tarek El-Ghazawi, Francois Cantonnet, Proshanta Saha, Rajeev Thakur, Rob

Ross, and Dan Bonachea. It was released in July 2004. More information about

UPC and the UPC consortium can be found at http://upc.gwu.edu/.

About This Book

Although the UPC specifications are the ultimate reference of the UPC language,

the specifications are not necessarily easy to read for many programmers and do not

include enough usage examples and explanations, which are essential for most

readers. This book is the first to provide an in-depth interpretation of the UPC

language specifications, enhanced with extensive usage examples and illustrations

as well as insights into how to write efficient UPC applications.

The book is organized into eight chapters and five appendixes:

� Chapter 1 provides a quick tutorial that walks readers quickly through the

major features of the UPC language, allowing them to write their first simple

UPC programs.
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� Chapter 2 positions UPC within the general domain of parallel programming

paradigms. It then presents the UPC programming model and describes how

data are declared and used in UPC.

� Chapter 3 covers the rich concept of pointers in UPC, identifying the types,

declarations, and usage of the various UPC pointers and how they work with

arrays.

� Chapter 4 explains how data and work can be distributed in UPC such that

data locality is exploited through efficient data declarations and work-sharing

constructs.

� Chapter 5 provides extensive treatment to dynamic memory allocation in the

shared space, showing all options and their usages via many thorough

examples.

� Chapter 6 covers thread and data synchronization, explaining the effective

mechanisms provided by UPC for mutual exclusion, barriers, and memory

consistency control.

� Chapter 7 provides sophisticated programmers with the tools necessary to

write efficient applications. Many hand-tuning schemes are discussed along

with examples and full case studies.

� Chapter 8 introduces the two UPC standard libraries: the collective operations

library and the parallel I/O library.

� Appendix A includes the full UPC v1.1.1 specification.

� Appendix B includes the full UPC v1.0 collective library specifications.

� Appendix C has the full v1.0 UPC-IO specifications.

� Appendix D includes information on how to compile and run UPC programs.

� Appendix E is a quick UPC reference card that will be handy for UPC

programmers.

Resources

The ultimate UPC resource is the consortium Web site, which is currently hosted at

http://upc.gwu.edu/. For this book, however, the reader should also consult

the publisher’s ftp site, ftp://ftp.wiley.com/public/sci_tech_med/

upc/, for errata and an electronic copy of the full code and Makefiles for all the

examples given in the book. Additional materials for instructors wishing to use this

book in the classroom are available from the first author.

Acknowledgments

Many of our colleagues have been very supportive during the development of this

book. In particular, the authors are indebted to François Cantonnet, whose help has

contributed significantly to the book’s quality. The continuous cooperation and

support of our editor, Val Moliere, and Dr. Hoda El-Sayed is also greatly appreciated.
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CHAPTER 1

Introductory Tutorial

The objective of this chapter is to give programmers a general understanding of

UPC and to enable them to write and run simple UPC programs quickly. The

chapter is therefore a working overview of UPC. Subsequent chapters are devoted

to gaining more proficiency with UPC and resolving the more subtle semantic

issues that arise in the programming of parallel computing systems using UPC. In

this chapter we introduce the basic execution model in UPC, followed by some of

the key UPC features, including:

� Threads

� Shared and private data

� Pointers

� Distribution of work across threads

� Synchronization of activities between threads

More in-depth treatment of these subjects is provided in the respective book

chapters. In addition, in subsequent chapters we address advanced features and

usage that may be needed for writing more complex programs. Nonetheless, this

introduction provides a valuable starting point for first-time parallel programmers

and a good overview for more experienced programmers of parallel machines.

However, advanced UPC programmers may wish to skip this chapter and proceed

to the following chapters, as all material in this introduction is included and

elaborated upon in the remainder of the book. It should be noted that UPC is an

extension of ISO C [ISO99], and familiarity with C is assumed.

1.1 GETTING STARTED

UPC, or Unified Parallel C [CAR99, ELG01, ELG03] is an explicit parallel language

that provides the facilities for direct user specification of program parallelism and

control of data distribution and access. The number of threads, or degree of

parallelism, is fixed at either compiler or program startup time and does not change

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.
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midexecution. Each of these threads is created at run time and executes the same

UPC program, although threads may take different paths through the program text

and may call different procedures during their execution. UPC provides many

parallel constructs that facilitate the distribution and coordination of work among

these threads such that the overall task may be executed much faster in parallel than

it would be performed sequentially.

Because UPC is an extension of ISO C, any C program is also a UPC program,

although it may behave differently when run in a parallel environment. Consider,

for example, a C program to print ‘‘hello world.’’

Example 1.1: helloworld1.upc

#include <stdio.h>

main()

{

printf("hello world\n");

}

The program file should be created with a file name that ends in ‘‘.upc,’’ such

as ‘‘helloworld1.upc’’ in Example 1.1. The commands to compile and run the

program may be platform-specific, but a typical installation may have a compiler

that is named upcc and that is invoked by the following example command:

upcc –o hello –THREADS 4 helloworld1.upc

Compilation will then produce an executable file called hello, which will always

run with four threads. Many machines require that parallel jobs be submitted to a

special job queue or at least run with a special command, for example:

upcrun hello

This command will then produce the output lines

hello world

hello world

hello world

hello world

Each of the output lines above was produced by one of the four identical threads,

each running the same main function. In parallel computing, this mode of

operation is known as the single program, multiple data (SPMD) model, where

all threads execute the same program but may be processing different data. Under

the SPMD execution model all threads run concurrently from the start to the end of

program execution, although there is no guarantee that they execute statements at

the same rate, and in this example we cannot tell which thread produced which line

of output.

2 INTRODUCTORY TUTORIAL



We can change the number of threads by recompiling with a different

‘‘–THREADS’’ flag or by compiling without the flag and specifying the number

of threads in the upcrun command. We can also determine the total number of

threads at run time using the UPC identifier THREADS and identify the thread

responsible for each line of output by using another identifier, MYTHREAD. In UPC,

threads are given unique MYTHREAD identifiers from 0 to THREADS-1. Using these

special constants, we produce a modified version of the ‘‘hello world’’ program in

which the output indicates the total number of threads as well as which thread

generated each line of output. In real parallel applications, MYTHREAD and

THREADS are used to divide work among threads and to determine the thread

that will execute each portion of the work. Incorporating these additional con-

structs, a new version of the ‘‘hello world’’ program is created.

Example 1.2: helloworld2.upc

#include <upc.h>

#include <stdio.h>

main()

{

printf("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS);

}

In addition to supplying the thread identifiers to the printf statement, the

inclusion of upc.h is provided, containing all pertinent UPC definitions. If the new

file is compiled in the same manner as before and hello is executed, the following

output may result:

Thread 1 of 4: hello UPC world

Thread 3 of 4: hello UPC world

Thread 2 of 4: hello UPC world

Thread 0 of 4: hello UPC world

The output lines do not necessarily appear in thread number order but may appear

in any order (even ‘‘normal’’ ascending order!).

1.2 PRIVATE AND SHARED DATA

UPC has two different types of variables, those that are private to a given thread and

those that are shared. This distinction also carries over to more general data types,

such as arrays or structures. Shared variables are useful for communicating

information between threads, since more than one thread may read or write to

them. Private variables can only be accessed by a single thread but typically have

some performance advantages over shared variables.

PRIVATE AND SHARED DATA 3



To demonstrate the use of shared and private variables, consider the problem of

printing a conversion table that provides a set of celsius temperatures and their

corresponding Fahrenheit values as shown in Table 1.1. For now we ignore the

problem of printing the table heading and of ordering the table elements, and

instead, write a program that simply prints a set of valid Celsius–Fahrenheit pairs.

Let us first consider a program in which each thread computes one table entry. The

following program would produce the 12-entry table above, or some reordering of

it, when run with 12 threads.

Example 1.3: temperature1.upc

#include <stdio.h>

#include <upc.h>

main ()

{

static shared int step=10;
int fahrenheit, celsius;

celsius= step*MYTHREAD;
fahrenheit= celsius*(9.0/5.0) + 32;

printf ("%d \t %d \n", fahrenheit, celsius);
}

By default, variables in UPC are private, so the declaration

int fahrenheit, celsius;

TABLE 1.1 Celsius–Fahrenheit

Temperature Conversion Table

Fahrenheit Celsius

32 0

50 10

68 20

86 30

104 40

122 50

140 60

158 70

176 80

194 90

212 100

230 110
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creates instances of both variables for each thread. Each instance of the variables is

independent, so the respective instance variables of different threads may have

different values. They may be assigned and accessed within their respective thread

without affecting the variable instances of other threads. Thus, each thread can be

engaged in a separate computation without value conflicts while all threads are

executing in parallel.

In contrast, the declaration

static shared int step=10;

creates a shared variable of type int using the UPC shared type qualifier. This

means that there will be only one instance of step, and that variable instance will

be visible and accessible by all threads. In the example, this is a convenient way to

share what is essentially a constant, although UPC permits threads to write to

shared variables as well.

Note that in the declaration, the type qualifier is static, as shared variables

cannot have automatic storage duration. This ensures that shared variables are

accessible throughout the program execution so that they cannot disappear when

one thread exits a scope in which a shared variable was declared. Alternatively, the

shared variable could have been declared as a global variable before main().

The line

celsius = step * MYTHREAD;

accesses the step value to ensure that all threads will use celsius values that are

multiples of 10, and use of MYTHREAD ensures that they will start at zero and be

unique. The statements

fahrenheit = celsius * (9.0/5.0) + 32;

printf("%d \t %d \n", fahrenheit, celsius);

will be executed by each thread using local celsius and fahrenheit values.

There is no guarantee for the order in which the threads will execute the print

statement, so the table may be printed out of order. Indeed, one thread may execute

all three of its statements before another thread has executed any. To control the

relative ordering of execution among threads, the programmer must manage syn-

chronization explicitly through the inclusion of synchronization constructs within

the program code specification, which is covered in Section 1.4.

Example 1.3 is somewhat simplistic as a parallel program, since very little work

is performed by each thread, and some of that work involves output to the screen,

which will be serialized in any case. There is some overhead associated with the

management of threads and their activities, so having just one computation per

thread as in Example 1.2 is not efficient. Having larger computations at each thread

will help amortize parallel overhead and increase efficiency. This small example

and many others throughout the book are discussed because of their educational

value and are not necessarily designed for high performance. The following

example, however, allocates slightly more work to each thread.

PRIVATE AND SHARED DATA 5



Example 1.4: temperature2.upc

#include <stdio.h>
#include <upc.h>
#define TBL_SZ 12

main ()

{

static shared int step=10;

int fahrenheit, celsius, i;

for (i=0; i< TBL_SZ; i++)
if (MYTHREAD == i%THREADS)
{

celsius = step*i;

fahrenheit = celsius*(9.0/5.0) + 32;

printf ("%d \t %d \n", fahrenheit, celsius);

}
}

In Example 1.4, the number of entries in the table is given by the con-

stant TBL_SZ, which is set to 12. The loop will sequence through all TBL_SZ

iterations, assigning an iteration to each thread in round-robin fashion. Thus, thread

0 will execute iterations 0, THREADS, 2*THREADS, and so on, while thread 1 will

execute iterations 1, THREADSþ1, 2*THREADSþ1, and so on. If the table size

were 1, only thread 0 would execute an iteration; the rest of the threads would not

do any useful work, as they all fail the test in the for loop.

The loop as written is not efficient, since each thread evaluates the loop header

13 times, and this redundant loop overhead may have nearly the same temporal cost

as that of the sequential program. One way to avoid this is by changing the for

loop as follows:

for(i=MYTHREAD; i < TBL_SZ; i+=THREADS)

In this case, each thread evaluates the loop header at most TBL_SZ/THREADS þ1

times. Note that the celsius calculation now uses the loop index i rather than

MYTHREAD, so it correctly evaluates several table entries.

1.3 SHARED ARRAYS AND AFFINITY OF SHARED DATA

A problem with the program of Example 1.4 is that the table may be produced out

of order. One possible solution is to store the conversion table in an array and then

have one thread print it in order. The following code shows how this might be done,

although there is a remaining bug that we will fix in Section 1.4.

6 INTRODUCTORY TUTORIAL



Example 1.5: temperature3.upc

#include <stdio.h>

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit[TBL_SZ];
static shared int step=10;

int celsius, i;

for(i=MYTHREAD; i < TBL_SZ; i+=THREADS)
{

celsius= step*i;

fahrenheit[i]= celsius*(9.0/5.0) + 32;
}

if(MYTHREAD==0)
for (i=0 ; i < TBL_SZ; i++)
{

celsius= step*i;
printf ("%d \t %d \n", fahrenheit[i], celsius);

}
}

The line

static shared int fahrenheit [TBL_SZ];

declares an array fahrenheit of size TBL_SZ of integers, which will be shared

by all threads. Thus, any of the threads can directly access any of the elements of

fahrenheit. However, UPC establishes a logical partitioning of the shared space

so that each variable in shared space is defined to have affinity to exactly one thread.

On some platforms it is significantly faster for a thread to access shared variables to

which it has affinity than to access shared variables that have affinity to another

thread. A shared array such as fahrenheit will be spread across the thread

partitions in round-robin fashion such that fahrenheit [0] has affinity to thread

0, fahrenheit [1] has affinitiy to thread 1, and so on. After each thread gets

an element, we wrap around, giving fahrenheit [THREADS] to thread 0,

fahrenheit [THREADS+1] to thread 1, and so on. This round-robin distribution

of shared array elements is the default in UPC, but programmers may also distribute

shared arrays by blocks of elements. In later chapters we show how to declare

blocked distributions, which has a performance advantage for some applications.

In this temperature-conversion example, however, the default distribution of the

elements matches the work distribution, as each thread will compute exactly the

table elements that have affinity to it.

SHARED ARRAYS AND AFFINITY OF SHARED DATA 7



In general, to maximize performance, each thread should be primarily respon-

sible for processing the data that has affinity to that thread. This exercises two

important features of UPC: control over data layout, and control over work distri-

bution, both of which are critical to performance. On a machine with physically

distributed memory, the UPC run-time system will map each thread and the data

that has affinity to it to the same processing node, thereby avoiding costly inter-

processor communication when the data and computation are aligned.

Shared scalar variables, such as step in Example 1.5, also have a defined

affinity, which is always to thread 0. So the use of step in the initialization of

celsius is likely to be less expensive on thread 0 than on all the others. Although the

thread 0 default is not always what the programmers want, the clearly defined cost

model allows them to optimize a UPC program in a platform-independent manner.

For example, a thread may copy a shared variable into its own private variable to

avoid multiple costly accesses. The body of the for loop will compute the

Fahrenheit temperatures and store them in the fahrenheit array for printing

later. This will be done by the last loop in the program, which is executed only by

thread 0.

The erroneous assumption here is that since this printing loop follows the

one that computes temperatures into fahrenheit, the results of the table will

be printed in order. In fact, this does print the table in order; however, many of the

entries of the table may hold the wrong answer. This is because printing will start as

soon as thread 0 gets to the final print loop, while some of the other threads may be

left behind and still executing the loop that computes the temperatures. This

synchronization problem is addressed in Section 1.4.

1.4 SYNCHRONIZATION AND MEMORY CONSISTENCY

To guarantee that all threads finished computing the temperature table in the

fahrenheit array before thread 0 starts printing the array, barrier synchroniza-

tion is used. UPC offers several different types of barrier synchronization, described

in Chapter 6, but the simplest is the upc_barrier statement. This is

demonstrated in the following program, which now prints the values correctly, in

order.

Example 1.6: temperature4.upc

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit [TBL_SZ];

static shared int step=10;

int celsius, i;

8 INTRODUCTORY TUTORIAL



for(i=MYTHREAD; i < TBL_SZ; i+=THREADS)

{

celsius = step*i;

fahrenheit [i] = celsius*(9.0/5.0) + 32;

}

upc_barrier;

if(MYTHREAD==0)

for (i=0 ; i < TBL_SZ ; i++)

{

celsius= step*i;

printf ("%d \t %d \n", fahrenheit [i], celsius);

}

}

A upc_barrier statement ensures that all threads must reach that point before

any of them can proceed further. Thus, if a thread arrives at the upc_barrier

while any one of the other threads is still lagging behind, that thread will get

blocked. Once all threads have arrived at the barrier, they all proceed past it. Thus,

in our example we will be guaranteed that all threads have finished their computa-

tions and that the table is now holding the correct values before thread 0 begins

executing the printing loop.

Barrier synchronization is not the only useful form of synchronization. Since

shared data may be changed by any thread, there could be times when a thread

wants to make sure that it has exclusive access to a shared data object, for example,

to insert an element into a shared linked list or to update multiple values

consistently in a shared array. In these situations a programmer may associate a

lock with the data structure and acquire the lock before making a set of modifica-

tions to the structure. Only one thread may hold a given lock at any time, and if a

second thread attempts to acquire the lock, it will block until the first thread releases

it. In this way, programmers may guarantee mutual exclusion of shared data usage,

preventing erroneous behavior that can result from having one thread modify a data

structure while other threads are trying to access it. UPC provides powerful lock

constructs for managing such shared data, which are described in Chapter 6.

In general, the classes of errors that arise in parallel programs from insufficient

synchronization, called race conditions, occur when two threads access the same

shared data at the same time and at least one of them modifies the data. Most

programmers will be satisfied to write programs that are carefully synchronized

using UPC locks and barriers to avoid race conditions. However, synchronization

comes with a cost, and some programmers may wish to implement their own

synchronization primitives from basic memory operations or write programs that

read and write shared variables without synchronizing. These programmers are

relying on the memory consistency model in the language, which ensures some

basic properties of the memory operations. For example, if one thread writes a

SYNCHRONIZATION AND MEMORY CONSISTENCY 9



shared variable while another reads it, the reading thread must see either the old or

the new value, not a mixture of the two numbers, and if it keeps reading that

variable, it will eventually see the new value. In general, the memory consistency

model tells programmers whether operations performed by one thread have to be

observed in order by other threads.

Memory performance is a critical part of overall application performance, and

the memory consistency model can have a significant impact on that performance.

For example, the memory consistency model affects the ability of the compiler to

rearrange code and of the hardware to use caching and to pipeline and prefetch

memory operations. UPC therefore takes the view that the programmer needs

control over the memory consistency model and provides a novel set of mechan-

isms for this control, which are described in detail in Chapter 6.

1.5 WORK SHARING

Distributing work, typically independent iterations of a loop that can be run in

parallel, is often referred to as work sharing. Although the use of THREADS and

MYTHREAD in previous examples allowed us to distribute independent work across

the threads, each computing a number of entries in the fahrenheit table, UPC

provides a much more convenient iteration construct to do work sharing. This

construct is called upc_forall. Example 1.7 can take advantage of this construct

as shown below.

Example 1.7: temperature5.upc

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit [TBL_SZ];

static shared int step=10;

int celsius, i;

upc_forall(i=0; i <TBL_SZ; i++; i)
{

celsius= step*i;

fahrenheit[i]= celsius*(9.0/5.0) + 32;

}

upc_barrier;

if(MYTHREAD==0)

for (i=0; i < TBL_SZ; i++)

{
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celsius= step*i;

printf ("%d \t %d \n", fahrenheit [i], celsius);

}

}

In the line

upc_forall(i=0; i <TBL_SZ; i++; i)

the upc_forall construct has some syntactic similarities to the C language for

loop, as the first three fields in upc_forall are almost identical to the

corresponding fields of the C for loop. The first field, i=0, initializes the coun-

ter variable, i. The second field, i<TBL_SZ, provides the test that determines if the

variable value is within the range specified. The third field, i++, specified the

increment value separating successive values of the counter variable, thus determin-

ing how it is updated. So these fields simply identify the first iteration, test whether

the last iteration is reached, and increment the iteration counter. The upc_forall

construct differs from its sequential counterpart by a fourth field, which is called

affinity. In this case, the affinity i indicates that iteration i will be performed

by thread (i modulo THREADS). Thus, iteration distribution across the threads will

take place in round-robin fashion, in just the same way that the array elements

themselves were distributed by default. As the iteration number and the array index

are the same, each thread will be processing only the array elements that have

affinity to it. The performance implication is that threads will probably find the data

they will be processing locally accessible and will therefore avoid costly remote

access and the substantial overhead that this may require.

Note that after the upc_forall statement, we still used a barrier syn-

chronization. This is because the UPC specification does not require an impli-

cit barrier at the end of the iteration statement. The upc_forall has

interesting and powerful additional options and can be used in many dif-

ferent ways, providing significant flexibility of control, as discussed later in

the book.

1.6 UPC POINTERS

Pointers have been one of the most interesting and useful concepts of the C

programming language. It is perhaps difficult to imagine a C application program,

even a parallel one, without pointers. For now, let us consider replacing the array

notation in Example 1.7 with its equivalent pointer representation. As a first step, let

us do that in the printing loop only.

Example 1.8: temperature6.upc

#include <upc.h>

#define TBL_SZ 12
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main ()

{

static shared int fahrenheit [TBL_SZ];

shared int *fahrenheit_ptr=fahrenheit;
static shared int step=10;

int celsius, i;

upc_forall(i=0; i <TBL_SZ; i++; i)

{

celsius= step*i;

fahrenheit [i]= celsius*(9.0/5.0) + 32;

}

upc_barrier;

if(MYTHREAD==0)

for (i=0 ; i < TBL_SZ ; i++)
{

celsius= step*i;

printf ("%d \t %d \n", *fahrenheit_ptr++, celsius);
}

}

The line

shared int *fahrenheit_ptr=fahrenheit;

declares fahrenheit_ptr to be a pointer to type shared int and ini-

tializes that pointer to point at the first element of the shared array

fahrenheit. The pointer fahrenheit_ptr is actually a private pointer

to a shared type. This means that each thread will have an independent copy

of the pointer fahrenheit_ptr, which is able independently to advance

and access the elements of fahrenheit. Initially, all these copies of

fahrenheit_ptr, one per thread, will be pointing at the first element of

fahrenheit.

The line

printf ("%d \t %d \n", *fahrenheit_ptr++, celsius);

de-references the pointer printing the corresponding contents and then advances

the for loop pointer variable to designate the next element in the array. This, will

be executed only by thread 0, according to the construct

if(MYTHREAD==0)

In the following example, we extend our use of pointers to replace all array

notations with pointer notations and make needed adjustments to the code.
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Example 1.9: temperature7.upc

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit [TBL_SZ];

shared int *fahrenheit_ ptr;
static shared int step=10;

int celsius, i;

fahrenheit_ptr = fahrenheit + MYTHREAD;

upc_forall(i=0; i <TBL_SZ; i++; i)

{

celsius = step*i;

*fahrenheit_ptr = celsius*(9.0/5.0) + 32;
fahrenheit_ptr += THREADS;

}

upc_barrier;

if(MYTHREAD==0)

{

fahrenheit_ptr=fahrenheit;
for (i=0; i < TBL_SZ ; i++, fahrenheit_ptr++)
{

celsius= step*i;

printf ("%d \t %d \n", *fahrenheit_ptr, celsius);

}

}

}

The line

shared int *fahrenheit_ptr;

declares fahrenheit_ptr to be a pointer to a shared variable. However,

fahrenheit_ptr itself is private and each thread has an independent instance

of it. In the lines

fahrenheit_ptr = fahrenheit + MYTHREAD;

and

fahrenheit_ptr += THREADS;
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each of the fahrenheit_ptr instances is initialized to point at the first

array element that has the same affinity as the pointer instance itself. In addi-

tion, the update advances each pointer by THREADS elements in each iteration, to

move to the next element that has affinity to the thread of that pointer instance.

UPC has other types of pointers. For example, private pointers to private data

follow from being an ISO C compliant and a superset. The language also allows

the use of shared pointers to shared data. Casting from one type of pointer to

another is possible. All these issues are handled in more detail in Chapter 3.

1.7 SUMMARY

In this chapter we introduced the basic concepts of UPC in a tutorial style to enable

programmers to write their first UPC code quickly. We have in particular demon-

strated that UPC is a superset of C, and all C programs will run under UPC.

However, this will naturally create several copies of the same program running in

the SPMD mode.

Under UPC, multiple threads will be operating independently and each thread

may have access to both private and shared data objects, variables, and arrays. A

private variable has one independent instance per thread. The total number of

threads is THREADS, and each thread identifies itself using MYTHREAD. THREADS
and MYTHREAD can be thought of as special constants. Shared scalars have affinity

with thread 0. Shared array elements, however, are distributed by default in round-

robin fashion across the threads.

UPC has many synchronization constructs for barrier, split-phase barrier,

locks, and fence. UPC also provides programmers with the ability to specify

the memory consistency model as relaxed or strict. Work can be distributed

based on THREADS and MYTHREAD. Work can be distributed conveniently,

however, using upc_forall. All iterations must be independent in order to use

upc_forall. UPC provides rich pointer concepts. Threads can point to shared

data using either shared or private pointers. In addition, C pointer declarations

result in private pointers to private data. It is possible under UPC to cast one type

of pointer to another.

EXERCISES

1.1 Create a sequential C version of the temperature table generation program, to

compute Fahrenheit temperatures from 0 to 1000 degrees Celsius by steps of

0.01 degree. Comment the printf line and use appropriate system calls to

measure the wall clock time for program execution by measuring the times at

the beginning and end of the program. Compile and run using cc for an

adequately large table that gives some measurable execution time, and note the

execution time. Compile using upcc with one thread and run. Compare and

comment on the measured time for the sequential program when compiled by

cc versus upcc.
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1.2 Create a UPC parallel program for generating the temperatures table by using

the improved for loop into the last parallel example given in Section 1.4.

Comment the printf and add the time measurement statements as in

Exercise 1.1. Compile using upcc and run with one thread. Compare the

results of running the UPC program with one thread to those of Exercise 1.1.

1.3 Rewrite the program of Exercise 1.2 using a two-dimensional shared array of

two rows, where the first row holds the Celsius temperatures and the second

row holds the corresponding Fahrenheit temperatures.

1.4 Write an UPC program to sum the elements of two shared vectors. Make sure

that each thread operates only on the array elements that have affinity to that

thread.

1.5 Write a program that computes the mean of all elements in a shared array of a

general size, larger or smaller than the number of threads. You can use another

shared array of size equal to the number of threads to hold the partial sums

from each thread. At the end, thread 0 will need to sum up all partial sums,

compute the mean, and print the result.

1.6 Repeat Exercise 1.4 using the upc_forall construct.

1.7 Repeat Exercise 1.5 using the upc_forall construct.

EXERCISES 15





CHAPTER 2

Programming View and
UPC Data Types

Parallel programming languages that are available today represent a diversity

of programming models. Depending on the physical structure and incorporated

mechanisms of the underlying parallel computer, one or more languages may be

preferable to others in both ease of programming and/or delivered performance.

Similarly, the organization of the data structures and the flow control of the tasks of

a given application algorithm may strongly influence the parallel programming

language to be employed. UPC is one such parallel programming language that

facilitates general-purpose parallel computing through a set of constructs particu-

larly well suited to the major classes of parallel computers and a wide range of

parallel applications. In this chapter we present the foundation principles of parallel

programming as reflected by some of the most widely used languages and introduce

UPC from the perspective of these same basic concepts to position UPC in

the domain of parallel programming. Details of the UPC programming model are

presented with a discussion of the memory sharing and thread execution view. The

remainder of this chapter covers basic declarations, types, associated storage, and

constraints in the light of the UPC memory sharing and execution model.

2.1 PROGRAMMING MODELS

A programming model is simply the abstract view of how data and instructions are

stored and how processing takes place as perceived by the programmer [HWA98].

In uniprocessor systems, it is fair to say that there is one basic programming model,

which is the von Neumann stored program model. Under this model, there is only

one memory, and all data and instructions are stored in it. The processor fetches and

decodes the program instructions and accesses and processes data accordingly. In a

parallel system, the architecture is more complex, due to the multiplicity of pro-

cessors and possibly, memory subsystems. Parallel programming models therefore
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