
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. (This is on the master page)
ISLPED’03, August 25-27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008…$5.00.

The Microarchitecture of a Low Power Register File
Nam Sung Kim and Trevor Mudge

Advanced Computer Architecture Lab
The University of Michigan

1301 Beal Ave., Ann Arbor, MI 48109-2122

{kimns, tnm}@eecs.umich.edu

ABSTRACT
The access time, energy and area of the register file are often
critical to overall performance in wide-issue microprocessors,
because these terms grow superlinearly with the number of read
and write ports that are required to support wide-issue. This paper
presents two techniques to reduce the number of ports of a register
file intended for a wide-issue microprocessor without hardly any
impact on IPC. Our results show that it is possible to replace a
register file with 16 read and 8 write ports, intended for an eight-
issue processor, with a register file with just 8 read and 8 write
ports so that the impact on IPC is a few percent. This is
accomplished with the addition of several small auxiliary memory
structures — a “delayed write-back queue” and a “operand
prefetch buffer.” We examine several configurations employing
these structures separately and in combination. In the case of just
the delayed write-back queue, we show an energy per access
savings of about 40% and an area savings of 40%. This incurs a
performance loss of just 4%. The area savings in turn has the
potential for further savings by shortening global interconnect in
the layout. We also show that the performance loss can be almost
eliminated if both techniques are used in combination, although
some area and power savings is lost.

Categories and Subject Descriptors: B.0 [Hardware]:
General; C.1.1 [Computer Systems Organization]: Processor
Architecture — Pipeline Processors

General Terms: Design, Performance, Measurement

Additional Keywords and Phrases: Out-of-order Processor,
Register File, Write Queue, Low Power, Instruction Level
Parallelism

1. INTRODUCTION
The access time and size of register files in wide-issue
processors often play a critical role in determining cycle time.
This is because such files need to be large to support multiple
in-flight instructions and multiported to avoid stalling the
wide-issue. These factors also mean they contribute
significantly to the processor’s power consumption. In the

Alpha 21464, the 512-entry 16-read and 8-write (16-r/8-w)
ports register file consumed more power and was larger than
the 64 KB primary caches. To reduce the cycle time impact, it
was implemented as two 8-r/8-w split register files [9], see
Figure 1. Figure 1-(a) shows the 16-r/8-w file implemented
directly as a monolithic structure. Figure 1-(b) shows it
implemented as the two 8-r/8-w register files. The monolithic
register file design is slow because each memory cell in the
register file has to drive a large number of bit-lines. In
contrast, the split register file is fast, but duplicates the
contents of the register file in two memory arrays, resulting in
higher power consumption and greater die area. This trade-off
has been preferred in recent high-performance processor
designs. We will assume the split architecture as our base-line.
In either case, the high number of both register entries and
ports result in high energy dissipation, slow access time and
large area.

In experiments reported in a previous paper we showed that
most results from the function units are consumed by the
instructions waiting in the instruction queue within a few
cycles after they are produced [7]. In such situations it is
possible to avoid accessing the register file read ports by
getting the required data directly from the bypass paths [8] and
in so doing reduce the read port bandwidth. These results were
obtained using the SPEC2000 INT and FP benchmarks and
Simplescalar 3.0 [3] with an architectural configuration similar
to an EV8 [5]. This is an observation that is supported by the
work of a number of researchers [2][8]. We further observed
that average percentage of read port utilization cycles
requiring the full 16 read ports is about 0.1%, and that of idle
cycles not requiring any read port is around 54%. It is evident
that we have a plenty of under utilized cycles over which we
can distribute the reading of operands from the register file and

Figure 1. Examples of 16 read- and 8 write-port register file
implementation.

(a) monolithic register file (b) split register file

8×r / 8×w
ports

reg. file

8×r / 8×w
ports

reg. file

8×wports 16×rports
16×r / 8×w

ports
reg. file

8×wports 16×rports

384

further reduce the number of ports. For example, it is possible
to pre-fetch into the instruction queue ready operands from the
register file for those instructions waiting for a second
operand. This pre-fetch can be scheduled during under utilized
cycles.

In this work, we re-evaluate two techniques to reduce the
number of register ports without impacting performance.
These techniques rely on small auxiliary memory structures
called a Delayed Write-back Queue (DWQ), an Operand Pre-
fetch Buffer (OPB), and an Operand Pre-fetch Request Queue
(OPRQ). Both the DWQ and OPB with OPRQ are employed to
reduce the number of read ports. We will show that their use
allows fewer register file ports, resulting in a lower power,
faster, smaller register files and without significantly reducing
the IPC. The DWQ provides a source of operands recently
produced from the function units. It can be implemented using
a small circular FIFO queue with limited associativity and
avoids the need to access the large register file for these recent
operands. The DWQ reduces the peak need for read ports. The
OPB and OPRQ pre-fetch operands in the case when an
instruction has one operand ready, but is waiting on the second
in the instruction queue. Our simulations show that the
OPB/OPRQ combination are only marginally effective, even
when coupled with a DWQ.

This work derives from earlier work reported in [7]. It differs
in two respects: 1) We focus on reducing the number of read
ports rather than read and write ports because current practice
in register file design uses a differential bit-line structure — a
shared read/write port similar to cache memories. This is a
response to the need for bigger register files. 2) We use as our
baseline the split register file architecture of Figure [1]. These
split structures are now a common way to support a large
number of read ports as in the Alpha 21464. Hence, we will be
able to reduce the power and area by half if we reduce the
number of register read ports by half.

An important difference between most previous research and
ours is that we focus on reducing the number of register ports
rather than on reducing the number of registers. The
hierarchical register organizations of [1][2][4][12] are
examples. Unlike these approaches ours avoids miss penalties
associated with managing the hierarchy. In one case, [12], this
management is done by the compiler. Our approach is
transparent to the software. Prior work that has proposed
methods to reduce the access time/size/power of register files
often requires substantial changes to the pipeline. Examples
include the need to search an active list every cycle [1], or
storing register values in the instruction queue while
maintaining coherence in register caches [2]. Such changes
have the potential to create significant complications as noted
in [8]. In [11], they partitioned the register file into smaller
sub-banks containing fewer read and write ports. This
approach requires an additional pipeline stage to arbitrate the
register file ports, which results in an additional performance
penalty common to other multi-banked register file approaches
[1][4][8].

The remainder of the paper begins by describing the proposed
techniques in Section 2 and Section 3. Section 4 describes our
experiment setup, estimates the access time, energy, and area
impact of reducing the register file ports, and presents
experiment results. Section 5 concludes the paper with some
proposals for future direction for this research.

2. THE DELAYED WRITE-BACK QUEUE
As we mentioned in Section 1, most results from the function
units are consumed by the instructions waiting in the
instruction queue within a few cycles after they are produced.
If we add a small memory structure — our proposed DWQ —
in many cases we can access the write-back queue instead of
accessing the register file, provided we have some way of
knowing that the results are in the write-back queue. This, of
course, means that many of the register file accesses can be
circumvented, which results in a further possible reduction of
the number of read ports without losing any performance.

Figure 2 shows how the DWQ fits into the stages usually found
in a superscalar wide-issue processor. The results produced
from the functional units are written-back to both the register
file and DWQ. The FIFO-type DWQ holds the results for next
n cycles — 2 cycles in 2 after write-back. To hold the write-
backs for 2 cycles, we need a 16-entry queue in the case of an
8-issue machine where, in the peak case, we assume that 8
results can be generated in a cycle. The queue has two entries
capable of holding 8 results. If the results are reused in two
cycles or less they can be retrieved from the DWQ without
accessing the register file. As mentioned above, we write back
the results both to the DWQ and the register file to prevent
register state inconsistency in the case a branch mis-prediction
or an exception. Should either occur the contents of the
DWQ will be flushed.

To determine whether the result operands are in the write-back
queue and their location, a 2 bit counter is needed. The count is
decremented on every subsequent cycle after the value is
initially loaded into the counter. The counter is simple to
implement using 2 memory elements and a mux and does not
represent significant overhead. As soon as the instructions
waiting for the operand in the instruction queue are woken up
the ready bits in the entries set the 2-bit counters. When we
issue instructions we can check whether the counter value is
zero or not, to determine which memory structure to access —
the write-back queue or the register file as illustrated in Figure
2. In other words, the DWQ performs a very similar function to
the load and store buffer for L1 data caches.

Figure 2. The block diagram of an implementation of the 2-
cycle delayed write-back queue (DWQ) in the conventional

out-of-order processor pipeline.

res.
sched
logic

register
read func

unit
register

file

register
write

bypass

instr
queue DWQ

read

DWQ

(CAM)

schedule logic

src tag Rdy

result tag

2-bit cntr
start

385

To implement the DWQ, we choose to use a 8-read/8-write
port fully associative memory. Because the number of entries
is small (16) the associativity is not a serious penalty, and it
makes other aspects of the implementation simpler and easier.
We will discuss the energy, access time, and area overhead
caused by the DWQ in Section 4.3. We can implement the
DWQ with a plain SRAM memory supporting FIFO
functionality, but this requires 3 more broadcast network
interconnects per a write-back between the function unit and
the instruction queue, as well as 3 more bits per an instruction
queue entry.

3. OPERAND PRE-FETCHING
3.1 The operand pre-fetch buffer
The experiments in [6] indicate that in 80% ~ 90% of the cases
one of the operands for an instruction is ready when it enters
the instruction queue after renaming. However, most of them
cannot be issued because the other operand is not ready and
thus they wait in the instruction queue for this second operand
to become available. If an operand is ready we are able to
identify the location (or address) of the physical register during
renaming, which means that we may pre-fetch some of them
while the instructions is in the instruction queue waiting for the
second operand. This removes the potential for read-port
congestion that would occur if we were to wait until both
operands were ready before sending them to issue slots. If we
can stagger the reading in the case where one becomes
available before the other we can utilize the read ports more
efficiently. In particular, there is a potential to reduce the
number of register file read ports without perhaps impacting
performance to an unacceptable degree.

Our proposed technique to reduce the number of read ports by
pre-fetching ready operands employs an operand pre-fetch
buffer (OPB) to store the pre-fetched operands, and a status bit,
the pre-fetch flag (PF), in the instruction queue entry to specify
where the operand is (OPB or register file) if there are any
available read ports not used by the issue stage when we place
an instruction into the instruction queue. In the issue stage we
check the PF bit to determine where we should send the
operand addresses to retrieve the operand.

Figure 3 shows a block diagram for an implementation of the
OPB in a conventional out-of-order processor pipeline. When
the rename logic dispatches instructions to the instruction
queue, it feeds the physical register number of the ready
operands to the pre-fetch logic, which requests register ports to

the resource scheduling or select logic. The resource
scheduling logic allocates a result bus, connected to a register
file write port, to a functional unit. We need this allocation
mechanism because there are more functional units than the
number of result buses or register file write ports. In addition,
it should also be extended to the register file read buses and
ports because there might be more register read bus and port
requests than available resources. However, the same resource
contention situation happens in assigning result buses, because
there are more functional units than available result buses.
Therefore, we use the same mechanism for assigning the
register file read buses.

If a register read bus and port is granted to the pre-fetch logic,
it accesses the register file and store the pre-fetched operands
to the OPB with the source tags which are just the physical
register numbers. Each OPB entry contains the physical
register number and an operand. It can be implemented with a
fully associative memory, which remains inexpensive if it
requires only a small number of entries (16~32) with a small
number of read and write ports (e.g., 8-r/8-w ports).

In addition, we need an additional pre-fetch flag bit associated
with each source operand field in each instruction queue entry.
When both operands for an instruction are ready and woken
up, the instruction queue request function units, result buses
and register ports be sent to the scheduling logic. If there are
available functional units, result buses and register read ports,
the selection logic issues the instruction and read operands
from the register file or the OPB according to the pre-fetch bit
status of each source tag.

3.2 The operand pre-fetch request queue

The operand pre-fetch technique proposed in Section 3.1 may
pre-read the operands only if there are available ready
operands in the physical register file, register read ports, and
operand pre-fetch buffer space. All these conditions must be
met in a cycle — the dispatching cycle of the instruction. This
is not the common case, because we have more register port
congestion when we reduce the number of register ports. In
other words, it reduces the chances to pre-fetch operands by
limiting the operand pre-fetches to the dispatch cycle.
However, we can improve the chances of pre-fetching
operands by adding an operand pre-fetch request queue
(OPRQ). When we do not have either any available register
read ports or operand pre-fetch space at the dispatch cycle of
the instruction, we send the physical register address of the
ready operand to the operand pre-fetch request queue.

Figure 4 shows the block diagram of an implementation of the
OPRQ combined with the OPB. In this technique, we push the
ready physical register number and the instruction queue entry
pointer of the dispatched instruction into the OPRQ at the
dispatch cycle when we do not have available resources for
pre-fetching. The OPRQ monitors availability of necessary
resources with information given from the scheduling logic.
Whenever the pre-fetch conditions are met, it requests operand
pre-fetches to the pre-fetch logic by sending the physical
register number from the head entry of the OPRQ. As soon as
the pre-fetch logic successfully finishes reading the requested
operand, it updates the associated pre-fetch flags in the
instruction queue with the instruction queue entry pointer from
the OPRQ.

Figure 3. The block diagram of an implementation of the
operand pre-fetch request buffer with OPB in the

conventional out-of-order processor pipeline.

prefetch
logic

rdy phy.reg #
register
read OPB

(CAM)

OPB
read

rename
logic

dispatch
instr instr

queue

res.
sched
logic

wakeup /
select

register
read func

unit

phy. reg #

phy. reg. # operand

386

4. EXPERIMENTAL EVALUATION
4.1 Methodology
Our evaluation methodology combines detailed processor
simulation to obtain performance analysis and event counts,
with analytical modeling for estimating access time, energy,
and area for the register files with various combinations of
read and write ports. The SimpleScalar toolset [3] is employed
to model an out-of-order speculative processor with a two-
level cache. The simulation parameters, listed in Table 1,
roughly correspond to those of a present-day high-end
microprocessor such as the Alpha 21464 [5].

The register update unit employed in the standard version of
SimpleScalar was replaced with instruction queues and a
reorder buffer. In addition, we modeled the conflicts that
results from having a finite number of read and write ports
(SimpleScalar assumes an infinite number of both). Finally, we
added models for the DWQ, OPB, and OPRQ. Our benchmarks
came from the SPEC2000 INT and FP benchmarks and were
compiled with GCC 2.6.3 using “-O2” optimizations and
statically linked library code. We ran 200 million instructions
for each simulation after fast forwarding 20 billion to warm up
the systems under study. This allowed us to complete the
simulations in a reasonable time while avoiding results that
might be biased by startup effects.

4.2 Impact on IPC of reducing the ports
 Equation (1) shows the reduction in loss of performance
(LossReduction) when using the proposed techniques. This
metric shows relative performance improvement of the
proposed techniques against register files with 8-read ports.
We also show the straight performance loss (PerfLoss) metric
of (2) for each experimental result to show absolute
performance degradation of register files with fewer ports
against the register file of full 16-read and 8-write ports.

(1)

(2)

Figure 5 shows the impact on IPC of reducing the number of
read ports by half when a DWQ is included. In this experiment,
8- (1-deep FIFO), 16- (2-deep FIFO), and 32-entry (4-deep
FIFO) DWQs were studied. The experimental results indicate
that 8-, 16-, and 32-entry DWQs reduce the performance loss
by about 78%, 85%, and 91% compared to an 8-read port
register file. The experiments also show just a straight 6%, 4%,
and 2% performance loss against a 16-read port register file.
However, because the access time of the 32-entry 8-r/8-w
fully-associative memory is slower than one of the 512-entry
8-r/8-w register file that we are trying to replace with

Figure 4. The block diagram of an implementation of the
operand pre-fetch request buffer with OPB in the

conventional out-of-order processor pipeline.

src physrc phy. . reg reg ## IQ idIQ id

prefetch
logic

rdy phy.reg #
register
read OPB

(CAM)

OPB
read

rename
logic

dispatch
instr instr

queue

res.
sched
logic

wakeup /
select

register
read func

unit

phy. reg #

OPRQ
(SRAM)

rdy phy.reg #
w/ IQ id

LossReduction
IPC8-read reg file w/ DWQ IPC8-read reg file–

IPC16-read reg file IPC8-read reg file–
--=

able 1. Simulation Parameters

Parameters Values

fetch queue / speed 32 instructions / 1x

ROB size 512 entry

IQ size 256 entry

LSQ size 64 entry

INT ALU / Mul-Div 8 / 2/ 2

FP ALUs / Mult-Div 4 / 2

memory bus width /
latency

8 bytes / 80 and 8 cycles for the first and inter
chunks

inst. / data TLBs 128 entry / 32 entry in each way, 8KB page
size, fully-associative, LRU, 28-cycle latency

L1 caches 64KB, 4-way, 64B blocks, LRU, 1 cycle
latency for the inst/ 2 cycle for the data, write-
back

L2 unified cache 4MB, 8-way, 128B line block, LRU, 12 cycle
latency

PerfLoss IPC16-read reg file IPC8-read reg file (or w/ DWQ)–=

50%

60%

70%

80%

90%

100%

ammp equake lucas bzip gcc vortex Avg

Benchmarks

N
or

m
al

iz
ed

 I
P

C

16R/8W 8R/8W 8R/8W/8DWQ 8R/8W/16DWQ 8R/8W/32DWQ

Figure 5. The impact on IPC of halving the number of read
ports when using DWQ’s.

50% reduction of register file read ports using DWQ’s

387

something smaller, we will not consider the 32-entry DWQ
further.

Figure 6 shows the impact on IPC of reducing the number of
read ports by half with and without an operand pre-fetch buffer
(OPB). In an 8-wide issue machine we compare a file with 16-
read ports to one with 8-read ports. In the case with 8-read
ports we show the IPCs for 8-read ports without an OPB, and
then with 8, 16, and 32 OPBs. For each OPB size, we use
OPRQs having twice as many entries as the OPB. The
experimental results indicate that 8-, 16-, and 32-entry OPBs
reduce the performance loss by about 6%, 15%, and 33%
compared to a system with just an 8-read port register file. The
experiments also show a straight 25%, 22%, and 18%
performance loss against 16-read port register file. There is
some improvement to be had by using 32 OPBs rather than 16.
However, considerations of access time, energy, and area
overhead, mean we will limit ourselves to a 16-entry OPB with
a 32-entry OPRQ for the rest of the experiments.

If we compare the results in Figure 6 with those in Figure 5
(compare averages) we see that the DWQ achieves greater
performance improvements than the OPBs with OPRQs.
However, there is some opportunity to improve the
performance by combining both the OPB/OPRQ and DWQ
techniques. This can be seen from the results of Figure 7,
where we show the impact on IPC when we employ both. In
this experiment, we again used a 16-entry OPB with a 32-entry
OPRQ. The experimental results indicate that 8-, 16-, and 32-
entry DWQs when combined with the OPB/OPRQ reduce the

performance loss by about 93%, 96%, and 99% when
compared to just an 8-read port register file. The experiments
also show just a 2%, 1%, and ~0% performance loss against a
16-read port register file. Furthermore, this combined
technique shows about a 15%, 11%, and 8% IPC improvements
against the DWQ only technique, illustrating that the OPB
technique can help the DWQ-only configuration.

Table 2 shows the summary of the average performance
comparisons for the proposed techniques. We just show the
case for a 16 entry DWQ. The combined DWQ and OPB with
OPRQ technique virtually eliminates the performance loss of
reducing register read-ports. The reduced number of ports
gives us a lower power, and smaller register file, which, in
turn, has the potential to improve the clock rate. The detailed
access time, energy, and area calculations will be discussed in
Section 4.3.

4.3 Impact on energy of reducing the ports

Table 3 shows energy, access time, and area estimation of 512-
entry 16-r/8-w, and 8-read/8-write port register files and
auxiliary memory structures for our microarchitectural
modification of the register file required to support the reduced
port register files. We constructed the 512-entry 16-r/8-w port
register file using two 8-r/8-w port ones, as mentioned earlier
(i.e., a split register file structure). This is our baseline. We
used a modified version of CACTI 3.0 [10] and assumed
0.13µm technology. In particular, we modified CACTI so that
it can estimate the energy, access time, and area of memory
structures such as a register file, the DWQ, and the OPRQ,
which do not require tag memory in cache memories. We have
two options for the DWQ. We can implement it with a fully
associative memory to avoid complicating the address
broadcast bus. Or we can implement it with a regular memory
structure with the broadcast bus. Our figures reflect the first
choice. For the OPB, we assume that it has an 8-read/8-write
fully associative memory with 16 entries. We also assume that
each entry of OPRQ has 16 bits for the 16-entry OPRQ.

50%

60%

70%

80%

90%

100%

ammp00 equake00 lucas00 bzip200 gcc00 vortex00 Avg

Benchmarks

N
or

m
al

iz
ed

 I
P

C

16R/8W 8R/8W 8R/8W/8OPB 8R/8W/16OPB 8R/8W/32OPB

Figure 6. The impact on IPC of halving the number of read
ports when using OPB’s with OPRQ’s.

50% reduction of register file read ports using OPB’s and OPRQ’s

Table 2. The average performance comparisons.

Memory LossReduction PerfLoss

8-r/8-w ports RF - 27%

w/ 16 DWQ 85% 4%

w/ 16 OPB 15% 22%

w/ 16 DWQ and 16 OPB 96% 1%

50%

60%

70%

80%

90%

100%

ammp equake lucas bzip gcc vortex Avg

Benchmarks

N
or

m
al

iz
ed

 I
P

C

16R/8W 8R/8W 8R/8W/8DWQ 8R/8W/16DWQ 8R/8W/32DWQ

Figure 7. The impact on IPC of halving the number of read
ports when using OPB’s with OPRQ’s and DWQ’s.

50% reduction of register file read ports using OPB/OPRQ/DWQ

388

Table 4 shows the energy, and area impact of reducing the
number of read ports by half. All results are normalized against
those of 2 split 512-entry register files having 8-read and 8-
write ports. These results show that we can save energy, and
area overhead with the proposed techniques. The configuration
that impacts the performance least has 8-read and 8-write ports
with a 16 entry DWQ, a 16 entry OPB, and a 32 entry OPRQ. It
shows just a ~1% loss. If we examine the savings (see the last
line of Table 4) we see that we are able to build a register file
that has the performance of a 16-read and 8-write port file
while reducing the energy per access by 22% and saving 26%
in area. The area savings also has the potential to reduce the
global interconnect between other components.

If we are prepared to suffer a 4% loss in IPC the configuration
that just employs a 16 entry (2-deep FIFO) gives nearly a 40%
savings in energy and area. This could translate into significant
savings in instructions per second, if the register file were on
the critical path

5. CONCLUSION
In this paper, we develop two techniques for reducing the
number of register file ports without impacting IPC noticeably.
The techniques are based on: 1) a delayed write-back queue;
and 2) an operand pre-fetch technique comprised of an operand
pre-fetch buffer and request queue. We described the
implementations of both techniques. They rely on the addition
of small auxiliary memory structures (DWQ, OPB, and OPRQ)
to reschedule accesses to the register file so that the maximum
number of ports is rarely needed. These structures further
reduce the need for ports by supplying recently written register
values directly to the processor pipelines.

There are several follow-up pieces of research that can be
done. First, the effect of the techniques on timing, and hence
instructions per second, could be made by including more
details about technology. Second, the effect of using real

branch predictors could be studied. Our expectation is that
using an imperfect branch predictor reduces the pressure on
register ports, because of the bubbles introduced by the
mispredictions. Our proposal may allow one to exploit this to
further reduce ports. There would also be more chances to pre-
fetch operands if we have less use of the register ports. Third,
one could use our delayed write back and operand pre-fetch
techniques to improve performance for register files that
require multi-cycle accesses. The delayed write-back queue
and operand pre-fetch buffer are small memory structures that
can be accessed in a single cycle, which means that multiple-
cycle register file accesses can be replaced with accesses to a
fast single-cycle delayed write-back queue or operand pre-
fetch buffer. Running the register file slowly may allow more
savings in energy and size. Unlike the hierarchical register file
approach, such a solution does not have any coherence
problems.

Acknowledgement: This work was supported by an Intel
Graduate Fellowship, by DARPA contract number F33615-00-
C-1678, by SRC 2001-HJ-904, and by NSF Grant CCR-
0073497.

6. REFERENCE
[1] R. Balasubramonian et al. Reducing the complexity of the

register file in dynamic superscalar processors. Proc. Ann.
IEEE/ACM Symp. on Microarchitecture, Dec. 2001.

[2] E. Borch et al. Loose loops sink chips. Proc. of the 8th Int.
Symp. on High Performance Computer Architecture, Feb.
2002.

[3] D. Burger and T. Austin. The SimpleScalar Toolset Version
2.0. Tech. Rept. TR-97-1342, Univ. of Wisconsin-Madison,
June 1997.

[4] K. Cruz et al. Multiple-banked register file architectures.
Proc. Int’l Symp. on Computer Architecture. June 2000.

[5] J. Emer. EV8: The post-ultimate Alpha. Keynote at PACT,
Sep. 2001.

[6] D. Ernst et al. Efficient dynamic scheduling through tag
elimination. Proc. of the 8th Int. Symp. on High Performance
Computer Architecture, May 2002.

[7] N. Kim and T. Mudge. Reducing register ports using delayed
write-back queues and operand prefetch. Proc. Int’l Conf. on
Supercomputing, June 2003.

[8] I. Park et. al. Reducing register ports for higher speed and
lower energy. Proc. Ann. IEEE/ACM Symp. on
Microarchitecture, Nov. 2002.

[9] R. Preston et al. Design of an 8-wide superscalar RISC
microprocessor with simultaneous multithreading. Proc.
ISSCC Digest and Visuals Supplements, Feb. 2002.

[10] P. Shivakumar et al. An Integrated Cache Timing, Power, and
Area Model. WRL Research Report, Feb. 2002.

[11] J. Tseng and K. Asanovic. Banked multiported register files
for high-frequency superscalar microprocessors. Proc. Int’l
Symp. Computer Architecture. June 2003, to appear.

[12] J. Zalamea et al. Two-level hierarchical register file
organization for VLIW processors. Proc. Ann. IEEE/ACM
Symp. on Microarchitecture, Dec. 2000.

Table 3. Energy, access time and area of the register files
and the individual auxiliary memory structures.

Memory Energy (nJ) Access time
(ns) Area (cm²)

16-r/8-w ports RF 8.82 1.47 0.34

8-r/8-w ports RF 4.41 1.47 0.17

16 DWQ 1.07 1.43 0.04

16 OPB 1.07 1.43 0.04

32 OPRQ 0.37 0.59 0.01

Table 4. Normalized energy, area and performance of the
register files with auxiliary memory structures.

Configuration Energy Area PerfLoss

16-r / 8-w ports RF 100% 100% -

8-r / 8-w ports RF 50% 50% 27%

w/ 16 DWQ 62% 61% 4%

w/ 16 OPB & 32 OPRA 66% 64% 22%

w/ 16 DWQ, 16 OPB, &
32 OPRQ

78% 74% 1%

389

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

