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TOFU INTERCONNECT ARCHITECTURE
Topology-aware tunability and system utilization 

are the primary trade-offs for mesh/torus-connected 
systems. Contiguous job allocation is intended to fulfill 
users’ needs for topology-aware tuning, while noncon-
tiguous job allocation maximizes system utilization. 
QCDOC (Quantum Chromodynamics on a Chip),1 Blue 
Gene,2 and QPACE (QCD Parallel Computing on the Cell 
Broadband Engine)3 systems employ contiguous job allo-
cation, while the Cray XT series4 employs noncontiguous 
job allocation. 

A contiguous job allocation scheme potentially re-
quires additional hardware like partition switches to 
provide a consistent view of network topology wherever 
an application runs on a full system or subsystem. Assum-
ing particular submesh shapes, architectural designers 
can reduce the number of necessary partition switches. 
However, a more flexible mechanism is required when 
assuming various job sizes. Because a multidimensional 
mesh topology can embed a ring topology, a higher-radix 
mesh/torus offers one solution. QCDOC employs a 6D torus 
topology and 12 network links per node.

We designed Tofu to be a 6D mesh similar to QCDOC 
but with a reduced number of network links, as a link’s 
peak throughput is roughly inversely proportional to the 
number of network links per node. Tofu reduces links 

R
esearchers continue to improve high-perfor-
mance computing systems by increasing the 
number of processor cores per node and nodes 
per system. To interconnect tens of thousands 
of nodes, many HPC systems employ mesh/

torus topologies because of their high scalability and low 
cost/performance ratio. 

On a mesh-connected system, topology-aware tuning 
is important for many applications. The system should 
be able to allocate a job contiguously and provide a torus 
topology for an individual job. To achieve high system 
utilization, a flexible-sized submesh is also important. 
To meet these needs, we have developed Tofu, an inter-
connect architecture that features a higher-radix mesh/
torus topology (Tofu stands for “torus fusion” or “torus-
connected full connection”). A Tofu system can be divided 
into an arbitrary size of rectangular submeshes just like 
a block of tofu, and provides a torus topology for each 
submesh.  

A new architecture with a six-dimensional 
mesh/torus topology achieves highly scal-
able and fault-tolerant interconnection 
networks for large-scale supercomputers 
that can exceed 10 petaflops.
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Unfortunately, faults inevitably occur in extremely large 
systems, despite efforts to reduce the failure rate. There-
fore, it is important to build a fault-tolerant system that 
isolates and replaces faulty components without stopping 
system operation. To achieve higher system utilization 
while tolerating faults and failures, Tofu has the ability 
to offer a 3D torus view on a submesh with a faulty node. 

Figure 3a shows an example of mapping coordinates 
of an application-view axis with a length of 9 on a non-
faulty submesh. In this case, the system chooses the x-axis 
and b-axis of the 6D mesh to be an allocation plane for 
the application-view axis. It maps coordinates 0 on node 
(0,0,0,0,0,0) and 5 on node (2,0,0,0,0,0).

Figure 3b shows an example of fault-tolerant mapping. 
Node (1,0,0,0,1,1) is down, and the length of the application-
view axis is reduced to 8. The system removes the four 
nodes (1,0,0,0,1,0), (1,0,0,0,1,1), (1,0,0,1,1,0), and (1,0,0,1,1,1) 
from the coordinate allocation. This mechanism is also 
effective for the hot-swap maintenance scheme.

High system utilization
High system utilization is required for cost-effective-

ness. Job allocation scheduling is especially effective and 
requires few additional hardware costs. For example, the 
RIKEN Super Combined Cluster (RSCC) system achieved 
78-79 percent utilization during 2005-2006, but there 
was still room for improvement. Consequently, RIKEN 
and Fujitsu Laboratories collaboratively introduced the 

by restricting the length of some 
additional dimensions to two. A 
dimension of length two requires 
only one additional network link 
and is sufficient to combine with 
another longer dimension to embed 
a ring topology.

Tofu has six coordinate axes: x, 
y, z, a, b, and c. The lengths of the 
ac axes are restricted to two, so 
each node has a total of 10 links. 
The length of the b-axis is restricted 
to three instead of two for fault tol-
erance. Twelve nodes having the 
same xyz coordinates constitute a 
node group and are interconnected 
by the abc-axes. A node group can 
be considered a unit of job alloca-
tion. Figure 1 shows examples of 
three node groups whose xyz co-
ordinates are (0,0,0), (1,0,0), and 
(2,0,0). The spherical vertices rep-
resent nodes and the cylindrical 
edges abc-axes. 

Multipath routing function
A routing algorithm that detours a unit under mainte-

nance is necessary to enable hot-swap maintenance. We 
therefore developed an algorithm for Tofu that divides 
packet routing into three phases. First, a packet traverses 
the abc-axes to select a path at a source node group. It then 
moves from the source node group to the destination node 
group along the xyz-axes. Finally, the packet travels along 
the abc-axes again to a destination node at the destination 
node group. Although the routing path in each phase is 
minimal, the total routing path is not because the Tofu 
routing algorithm can take abc-axes twice. Tofu routing can 
relay through an arbitrary node in a source node group, so 
there are a total of 12 paths for an arbitrary destination. 

Figure 2 shows examples of multiple paths. The arrows 
represent three routes from node (0,0,0,0,2,0) to node 
(2,0,0,0,0,1).

Torus mapping and fault tolerance
For many applications, topology-aware tuning is rec-

ommended to achieve the scalability of tens of thousands 
of nodes. Therefore, a Tofu system offers every job a net-
work topology view of a 3D torus. It embeds a 3D torus 
view into a 6D mesh space by corresponding two axes 
of the 6D mesh to one application-view axis. The system 
sequentially allocates the coordinates of each application-
view axis to form a loop in the plane composed of the 6D 
mesh’s two axes.
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Figure 1. Example Tofu node groups. Twelve nodes (spherical vertices) having the 
same xyz coordinates constitute a node group and are interconnected by the 
abc axes (cylindrical edges). 

c  = 0

b = 2

b = 1

b = 0

c  = 1

a = 0

a = 1

(x,y,z) = (0,0,0) (x,y,z) = (1,0,0) (x,y,z) = (2,0,0)
Source

Destination

Figure 2. Multipath routing in Tofu. Example of 3 out of 12 paths from the node 
(0,0,0,0,2,0) to the node (2,0,0,0,0,1).
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log from the Parallel Workloads 
Archive (www.cs.huji.ac.il/labs/
parallel/workload). We scaled a 
job’s number of nodes, with prop-
erties of candidate mesh shapes 
corresponding to the number of 
nodes, and assumed a large job had 
redundancy nodes for fault avoid-
ance. The simulation results with 
backfill job scheduling showed that 
system utilization of a single candi-
date job shape was about 70 percent 
and that of multiple candidates im-
proved to about 80 percent. Based 
on these results, we are develop-
ing a new job allocation scheduler 
which supports job allocation from 
multiple job shape candidates and 
utilizes enhanced scheduling algo-
rithms of the Meta Job Scheduler.

ADDITIONAL TOFU 
FEATURES

The Tofu interconnect architec-
ture has several other features.

Throughput and packet transfer
Tofu has high-throughput links with 10 gigabytes per 

second of fully bidirectional bandwidth for each. The link 
throughput is roughly derived from the off-chip bandwidth 
and network degree 10. We implemented 100 GBps of the 
off-chip bandwidth for each node to feed enough data to a 
massive array of 128-Gflops processors.6

Packet length is variable to minimize packet header 
overhead and improve effective bandwidth. The minimum 
packet length is 32 bytes and the maximum is 2,048 bytes, 
including the header and cyclic redundancy check (CRC). 
Packets are transferred via virtual cut-through,7 which 
achieves low latency by buffering packets only when the 
destination link is blocked.

Each link has four 8-Kbyte receive buffers and an 
8-Kbyte retransmission buffer. The receive buffers cor-
respond to four virtual channels and are used while the 
destination link is blocked. The retransmission buffer is 
used for link-level retransmission that recovers CRC errors. 

I/O communication routing
Preparing a dedicated I/O interconnect ensures I/O 

bandwidth. To achieve a beneficial cost/performance 
tradeoff, computation and I/O communication should 
share bandwidth—this is one of the reasons why com-
putation and I/O phases are often separated in a single 
application. However, even if computation and I/O com-
munications share bandwidth, I/O communication should 

Meta Job Scheduler, job allocation scheduling software 
that performs backfill scheduling, which improved RSCC’s 
system utilization to 92-93 percent during the following 
two years.5 This was roughly equivalent to a 17 percent 
hardware enhancement.

For mesh-connected supercomputers, fragmentation is 
the main obstacle to high system utilization. Working from 
the premise that flexible submesh shapes would help fill 
small fragments of free nodes, we utilized dimensional 
combinations to map the same 3D torus view. In Tofu, the 
b-axis has a different length than the ac-axes; this asym-
metricity increases a 6D mesh shape’s variation to achieve 
the specified 3D torus view. 

Consider, for example, all the possible mesh/torus 
shapes that can map a 12 × 12 × 6 torus view for a 3D 
torus-connected system and a Tofu system:

3D torus-connected system: 12 × 12 × 6, 12 × 6 × 12, 
6 × 12 × 12
Tofu system: 6 × 6 × 2 × 2 × 3 × 2, 6 × 2 × 6 × 2 
× 3 × 2, 2 × 6 × 6 × 2 × 3 × 2, 6 × 4 × 3 × 2 × 3 
× 2, 6 × 3 × 4 × 2 × 3 × 2, 4 × 6 × 3 × 2 × 3 × 2, 
4 × 3 × 6 × 2 × 3 × 2, 3 × 6 × 4 × 2 × 3 × 2, 3 × 
4 × 6 × 2 × 3 × 2

There are three possible shapes for the 3D torus-
connected system and nine for the Tofu system. A larger 
number of allocation candidate mesh shapes would be 
expected to improve system utilization.

   We simulated system utilization using a real workload 
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Figure 3. Fault-tolerant mapping in Tofu: (a) example of mapping on a nonfaulty 
submesh and (b) example of fault-tolerant mapping.
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tion. Collective communication functions are operated by 
chained barrier gates. A barrier gate waits for and trans-
mits one barrier packet. Figure 6 shows an example of 
a chain of four barrier gates. This chain of barrier gates 
repeats transmission and reception of a barrier packet four 
times to synchronize 16 nodes.

A chain of barrier gates can also perform the all-re-
duce operations of a 64-bit integer or a double-precision 
floating-point number. It converts a double-precision float-
ing-point number into two 160-bit floating-point data to 
obtain the same result at all nodes with a single barrier 

not pass the area in which other jobs communi-
cate for computation. To minimize the path on 
which I/O communication crosses other jobs, we 
arranged the coordinates of the I/O node and rout-
ing orders.

Figure 4 shows a desirable I/O communication 
path. A partial network of z coordinates equal 
to 0 forms the I/O network, and the remaining 
network of z coordinates larger than 0 defines 
the computation network. Rather than have I/O 
communication pass the x-axis and y-axis on the 
computation network, it is preferable that it only 
pass the z-axis. We designed two groups of virtual 
channels with different routing orders, ensuring 
that a desirable virtual channel could transmit a 
packet dedicated for I/O communication. Compu-
tation nodes transmit packets by virtual channels 
that have the z-axis as the first order, and I/O 
nodes transmit packets by virtual channels that 
have the z-axis as the last order.

Multiple communications engines
Some applications can overlap commu-

nications to multiple nodes simultaneously. 
Parallel execution of communication primitives 
by multiple communication engines may improve 
performance, especially of communication-in-
tensive and nearest-neighbor communicating 
applications like Lattice QCD. We therefore im-
plemented four communication engines in each 
node in Tofu. As Figure 5 shows, each engine can 
transmit and receive packets simultaneously, 
transmit packets to any direction, and receive 
packets from any direction. Four communica-
tion engines can also improve the throughput of 
point-to-point communication by simultaneously 
using multiple paths between nodes.

Integrated collective function
The collective communication function’s 

communication time often suppresses a highly 
parallel application’s performance scalability. 
Collective communications are generally imple-
mented by combining point-to-point communications, 
whose frequency increases with the number of nodes en-
gaging in the collective communication function. Each 
point-to-point communication involves CPU processing 
time that often gets unexpectedly longer, and this variabil-
ity greatly affects the completion time of a highly parallel 
collective communication function.

We addressed this problem by designing in the hard-
wired logic an integrated collective function, which 
processes frequently used collective communication 
functions (barrier and reduce) without any CPU interven-
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Figure 4. Desirable I/O communication path. A partial network of 
z coordinates equal to 0 forms the I/O network, and the remaining 
network of z coordinates larger than 0 defines the computation 
network. Computation nodes transmit packets by virtual channels 
that have the z-axis as the first order, and I/O nodes transmit packets 
by virtual channels that have the z-axis as the last order.
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Figure 5. Block diagram of a node with four communication engines. 
Each engine can transmit and receive packets simultaneously, 
transmit packets to any direction, and receive packets from any 
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H
igh-performance computing systems are 
becoming denser, leaner, and more inte-
grated, making it increasingly challenging to 
manage and repair failures. By effectively iso-
lating components that require maintenance 

and repair, the Tofu interconnect architecture prom-
ises to be a fundamental technology for future exascale  
systems. 
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Figure 6. Example of four barrier gates operating and connected to a barrier 
channel. This chain of barrier gates repeats transmission and reception of a 
barrier packet four times to synchronize 16 nodes.
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