
COMPUTER	36

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE	

TOFU INTERCONNECT ARCHITECTURE
Topology-aware tunability and system utilization

are the primary trade-offs for mesh/torus-connected
systems. Contiguous job allocation is intended to fulfill
users’ needs for topology-aware tuning, while noncon-
tiguous job allocation maximizes system utilization.
QCDOC (Quantum Chromodynamics on a Chip),1 Blue
Gene,2 and QPACE (QCD Parallel Computing on the Cell
Broadband Engine)3 systems employ contiguous job allo-
cation, while the Cray XT series4 employs noncontiguous
job allocation.

A contiguous job allocation scheme potentially re-
quires additional hardware like partition switches to
provide a consistent view of network topology wherever
an application runs on a full system or subsystem. Assum-
ing particular submesh shapes, architectural designers
can reduce the number of necessary partition switches.
However, a more flexible mechanism is required when
assuming various job sizes. Because a multidimensional
mesh topology can embed a ring topology, a higher-radix
mesh/torus offers one solution. QCDOC employs a 6D torus
topology and 12 network links per node.

We designed Tofu to be a 6D mesh similar to QCDOC
but with a reduced number of network links, as a link’s
peak throughput is roughly inversely proportional to the
number of network links per node. Tofu reduces links

R
esearchers continue to improve high-perfor-
mance computing systems by increasing the
number of processor cores per node and nodes
per system. To interconnect tens of thousands
of nodes, many HPC systems employ mesh/

torus topologies because of their high scalability and low
cost/performance ratio.

On a mesh-connected system, topology-aware tuning
is important for many applications. The system should
be able to allocate a job contiguously and provide a torus
topology for an individual job. To achieve high system
utilization, a flexible-sized submesh is also important.
To meet these needs, we have developed Tofu, an inter-
connect architecture that features a higher-radix mesh/
torus topology (Tofu stands for “torus fusion” or “torus-
connected full connection”). A Tofu system can be divided
into an arbitrary size of rectangular submeshes just like
a block of tofu, and provides a torus topology for each
submesh.

A new architecture with a six-dimensional
mesh/torus topology achieves highly scal-
able and fault-tolerant interconnection
networks for large-scale supercomputers
that can exceed 10 petaflops.

Yuichiro Ajima, Shinji Sumimoto, and Toshiyuki Shimizu, Fujitsu

TOFU: A 6D
MESH/TORUS
INTERCONNECT
FOR EXASCALE
COMPUTERS

37NOVEMBER 2009

Unfortunately, faults inevitably occur in extremely large
systems, despite efforts to reduce the failure rate. There-
fore, it is important to build a fault-tolerant system that
isolates and replaces faulty components without stopping
system operation. To achieve higher system utilization
while tolerating faults and failures, Tofu has the ability
to offer a 3D torus view on a submesh with a faulty node.

Figure 3a shows an example of mapping coordinates
of an application-view axis with a length of 9 on a non-
faulty submesh. In this case, the system chooses the x-axis
and b-axis of the 6D mesh to be an allocation plane for
the application-view axis. It maps coordinates 0 on node
(0,0,0,0,0,0) and 5 on node (2,0,0,0,0,0).

Figure 3b shows an example of fault-tolerant mapping.
Node (1,0,0,0,1,1) is down, and the length of the application-
view axis is reduced to 8. The system removes the four
nodes (1,0,0,0,1,0), (1,0,0,0,1,1), (1,0,0,1,1,0), and (1,0,0,1,1,1)
from the coordinate allocation. This mechanism is also
effective for the hot-swap maintenance scheme.

High system utilization
High system utilization is required for cost-effective-

ness. Job allocation scheduling is especially effective and
requires few additional hardware costs. For example, the
RIKEN Super Combined Cluster (RSCC) system achieved
78-79 percent utilization during 2005-2006, but there
was still room for improvement. Consequently, RIKEN
and Fujitsu Laboratories collaboratively introduced the

by restricting the length of some
additional dimensions to two. A
dimension of length two requires
only one additional network link
and is sufficient to combine with
another longer dimension to embed
a ring topology.

Tofu has six coordinate axes: x,
y, z, a, b, and c. The lengths of the
ac axes are restricted to two, so
each node has a total of 10 links.
The length of the b-axis is restricted
to three instead of two for fault tol-
erance. Twelve nodes having the
same xyz coordinates constitute a
node group and are interconnected
by the abc-axes. A node group can
be considered a unit of job alloca-
tion. Figure 1 shows examples of
three node groups whose xyz co-
ordinates are (0,0,0), (1,0,0), and
(2,0,0). The spherical vertices rep-
resent nodes and the cylindrical
edges abc-axes.

Multipath routing function
A routing algorithm that detours a unit under mainte-

nance is necessary to enable hot-swap maintenance. We
therefore developed an algorithm for Tofu that divides
packet routing into three phases. First, a packet traverses
the abc-axes to select a path at a source node group. It then
moves from the source node group to the destination node
group along the xyz-axes. Finally, the packet travels along
the abc-axes again to a destination node at the destination
node group. Although the routing path in each phase is
minimal, the total routing path is not because the Tofu
routing algorithm can take abc-axes twice. Tofu routing can
relay through an arbitrary node in a source node group, so
there are a total of 12 paths for an arbitrary destination.

Figure 2 shows examples of multiple paths. The arrows
represent three routes from node (0,0,0,0,2,0) to node
(2,0,0,0,0,1).

Torus mapping and fault tolerance
For many applications, topology-aware tuning is rec-

ommended to achieve the scalability of tens of thousands
of nodes. Therefore, a Tofu system offers every job a net-
work topology view of a 3D torus. It embeds a 3D torus
view into a 6D mesh space by corresponding two axes
of the 6D mesh to one application-view axis. The system
sequentially allocates the coordinates of each application-
view axis to form a loop in the plane composed of the 6D
mesh’s two axes.

c = 0

b = 2

b = 1

b = 0

c = 1

a = 0

a = 1

(x,y,z) = (0,0,0) (x,y,z) = (1,0,0) (x,y,z) = (2,0,0)

c = 0
c = 1

a = 0
c = 0

c = 1

a = 0

a = 1

b = 2

b = 1

b = 0

b = 2

b = 1

b = 0

b = 2

b = 1

b = 0
a = 1

Figure 1. Example Tofu node groups. Twelve nodes (spherical vertices) having the
same xyz coordinates constitute a node group and are interconnected by the
abc axes (cylindrical edges).

c = 0

b = 2

b = 1

b = 0

c = 1

a = 0

a = 1

(x,y,z) = (0,0,0) (x,y,z) = (1,0,0) (x,y,z) = (2,0,0)
Source

Destination

Figure 2. Multipath routing in Tofu. Example of 3 out of 12 paths from the node
(0,0,0,0,2,0) to the node (2,0,0,0,0,1).

COVER FE ATURE

COMPUTER	38

log from the Parallel Workloads
Archive (www.cs.huji.ac.il/labs/
parallel/workload). We scaled a
job’s number of nodes, with prop-
erties of candidate mesh shapes
corresponding to the number of
nodes, and assumed a large job had
redundancy nodes for fault avoid-
ance. The simulation results with
backfill job scheduling showed that
system utilization of a single candi-
date job shape was about 70 percent
and that of multiple candidates im-
proved to about 80 percent. Based
on these results, we are develop-
ing a new job allocation scheduler
which supports job allocation from
multiple job shape candidates and
utilizes enhanced scheduling algo-
rithms of the Meta Job Scheduler.

ADDITIONAL TOFU
FEATURES

The Tofu interconnect architec-
ture has several other features.

Throughput and packet transfer
Tofu has high-throughput links with 10 gigabytes per

second of fully bidirectional bandwidth for each. The link
throughput is roughly derived from the off-chip bandwidth
and network degree 10. We implemented 100 GBps of the
off-chip bandwidth for each node to feed enough data to a
massive array of 128-Gflops processors.6

Packet length is variable to minimize packet header
overhead and improve effective bandwidth. The minimum
packet length is 32 bytes and the maximum is 2,048 bytes,
including the header and cyclic redundancy check (CRC).
Packets are transferred via virtual cut-through,7 which
achieves low latency by buffering packets only when the
destination link is blocked.

Each link has four 8-Kbyte receive buffers and an
8-Kbyte retransmission buffer. The receive buffers cor-
respond to four virtual channels and are used while the
destination link is blocked. The retransmission buffer is
used for link-level retransmission that recovers CRC errors.

I/O communication routing
Preparing a dedicated I/O interconnect ensures I/O

bandwidth. To achieve a beneficial cost/performance
tradeoff, computation and I/O communication should
share bandwidth—this is one of the reasons why com-
putation and I/O phases are often separated in a single
application. However, even if computation and I/O com-
munications share bandwidth, I/O communication should

Meta Job Scheduler, job allocation scheduling software
that performs backfill scheduling, which improved RSCC’s
system utilization to 92-93 percent during the following
two years.5 This was roughly equivalent to a 17 percent
hardware enhancement.

For mesh-connected supercomputers, fragmentation is
the main obstacle to high system utilization. Working from
the premise that flexible submesh shapes would help fill
small fragments of free nodes, we utilized dimensional
combinations to map the same 3D torus view. In Tofu, the
b-axis has a different length than the ac-axes; this asym-
metricity increases a 6D mesh shape’s variation to achieve
the specified 3D torus view.

Consider, for example, all the possible mesh/torus
shapes that can map a 12 × 12 × 6 torus view for a 3D
torus-connected system and a Tofu system:

3D torus-connected system: 12 × 12 × 6, 12 × 6 × 12,
6 × 12 × 12
Tofu system: 6 × 6 × 2 × 2 × 3 × 2, 6 × 2 × 6 × 2
× 3 × 2, 2 × 6 × 6 × 2 × 3 × 2, 6 × 4 × 3 × 2 × 3
× 2, 6 × 3 × 4 × 2 × 3 × 2, 4 × 6 × 3 × 2 × 3 × 2,
4 × 3 × 6 × 2 × 3 × 2, 3 × 6 × 4 × 2 × 3 × 2, 3 ×
4 × 6 × 2 × 3 × 2

There are three possible shapes for the 3D torus-
connected system and nine for the Tofu system. A larger
number of allocation candidate mesh shapes would be
expected to improve system utilization.

 We simulated system utilization using a real workload

0
0

00
11

1

8
8

88

6
6

66
22

2

7 7
77

5
5

55
33

3

4 4
44

c = 0

b = 2

b = 1

b = 0

c = 1(a)

(b)

a = 0

a = 1

(x,y,z) = (0,0,0) (x,y,z) = (1,0,0) (x,y,z) = (2,0,0)

0
0

00
77

7

6 6
66

1
1

11

5
5

55

2
2

22
33

3

4 4
44

c = 0

b = 2

b = 1

b = 0

c = 1

a = 0

a = 1

(x,y,z) = (0,0,0) (x,y,z) = (1,0,0) (x,y,z) = (2,0,0)

Figure 3. Fault-tolerant mapping in Tofu: (a) example of mapping on a nonfaulty
submesh and (b) example of fault-tolerant mapping.

39NOVEMBER 2009

tion. Collective communication functions are operated by
chained barrier gates. A barrier gate waits for and trans-
mits one barrier packet. Figure 6 shows an example of
a chain of four barrier gates. This chain of barrier gates
repeats transmission and reception of a barrier packet four
times to synchronize 16 nodes.

A chain of barrier gates can also perform the all-re-
duce operations of a 64-bit integer or a double-precision
floating-point number. It converts a double-precision float-
ing-point number into two 160-bit floating-point data to
obtain the same result at all nodes with a single barrier

not pass the area in which other jobs communi-
cate for computation. To minimize the path on
which I/O communication crosses other jobs, we
arranged the coordinates of the I/O node and rout-
ing orders.

Figure 4 shows a desirable I/O communication
path. A partial network of z coordinates equal
to 0 forms the I/O network, and the remaining
network of z coordinates larger than 0 defines
the computation network. Rather than have I/O
communication pass the x-axis and y-axis on the
computation network, it is preferable that it only
pass the z-axis. We designed two groups of virtual
channels with different routing orders, ensuring
that a desirable virtual channel could transmit a
packet dedicated for I/O communication. Compu-
tation nodes transmit packets by virtual channels
that have the z-axis as the first order, and I/O
nodes transmit packets by virtual channels that
have the z-axis as the last order.

Multiple communications engines
Some applications can overlap commu-

nications to multiple nodes simultaneously.
Parallel execution of communication primitives
by multiple communication engines may improve
performance, especially of communication-in-
tensive and nearest-neighbor communicating
applications like Lattice QCD. We therefore im-
plemented four communication engines in each
node in Tofu. As Figure 5 shows, each engine can
transmit and receive packets simultaneously,
transmit packets to any direction, and receive
packets from any direction. Four communica-
tion engines can also improve the throughput of
point-to-point communication by simultaneously
using multiple paths between nodes.

Integrated collective function
The collective communication function’s

communication time often suppresses a highly
parallel application’s performance scalability.
Collective communications are generally imple-
mented by combining point-to-point communications,
whose frequency increases with the number of nodes en-
gaging in the collective communication function. Each
point-to-point communication involves CPU processing
time that often gets unexpectedly longer, and this variabil-
ity greatly affects the completion time of a highly parallel
collective communication function.

We addressed this problem by designing in the hard-
wired logic an integrated collective function, which
processes frequently used collective communication
functions (barrier and reduce) without any CPU interven-

Storage

Compute network
(z > 0)

I/O network
(z = 0)

Compute node

I/O nodes

Figure 4. Desirable I/O communication path. A partial network of
z coordinates equal to 0 forms the I/O network, and the remaining
network of z coordinates larger than 0 defines the computation
network. Computation nodes transmit packets by virtual channels
that have the z-axis as the first order, and I/O nodes transmit packets
by virtual channels that have the z-axis as the last order.

Communication
engine 1

Communication
engine 2

Communication
engine 3

Communication
engine 4

Link x+

Link x–

Link y+

Link y–

Link z+

Link z–

Link a

Link b+

Link b–

Link c

Crossbar
To
other
nodes

CPU
I/O bus

Interconnect controller

Figure 5. Block diagram of a node with four communication engines.
Each engine can transmit and receive packets simultaneously,
transmit packets to any direction, and receive packets from any
direction.

COVER FE ATURE

COMPUTER	40

Acknowledgments
The authors thank Yuji Oinaga and the many
Tofu project members for their valuable sug-
gestions and efforts.

References
		 1.	 P. Boyle et al., “The QCDOC Project,”
			 Nuclear Physics B—Proc. Supplements,
			 Mar. 2005, pp. 169-175.
		 2.	 The BlueGene/L Team, “An Overview of
			 the BlueGene/L Supercomputer,” Proc.
			 2002 ACM/IEEE Conf. Supercomputing
			 (SC 02), IEEE CS Press, 2002; https://asc.
			 llnl.gov/computing_resources/bluegenel/
			 pdf/sc2002-pap207.pdf.
		 3.	 G. Goldrian et al., “QPACE: Quantum
			 Chromodynamics Parallel Computing on
			 the Cell Broadband Engine,” IEEE Com-
			 puting in Science and Eng., Nov./Dec.
			 2008, pp. 46-54.

	 4.	 W.J. Camp and J.L. Tomkins, “Thor’s Hammer: The First
Version of the Red Storm MPP Architecture,” Proc. 2002
ACM/IEEE Conf. Supercomputing (SC 02), IEEE CS Press,
2002.

	 5.	 T. Shigetani, “RIKEN Super Combined Cluster Operations
Report” (in Japanese), Mar. 2009; http://accc.riken.jp/HPC/
Symposium/2008/shige.pdf.

	 6.	 T. Maruyama, “SPARC64 VIIIfx: Fujitsu’s New Generation
Octo Core Processor for PETA Scale Computing,” presenta-
tion, Hot Chips 21, 2009.

	 7.	 P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Com-
puter Networks, Jan. 1979, pp. 267-286.

	 8.	 T. Abe, T. Inari, and K. Seki, “JAXA Supercomputer Systems
with Fujitsu FX1 as Core Computer,” Fujitsu Scientific &
Technical J., Oct. 2008, pp. 426-434.

Yuichiro Ajima is a system architect in the Next-Generation
Technical Computing unit at Fujitsu Limited. His research in-
terests are in technical computing system architectures. He
received a PhD in information engineering from the University
of Tokyo. Ajima is a member of the Information Processing
Society of Japan (IPSJ). Contact him at aji@jp.fujitsu.com.

Shinji Sumimoto is a senior architect in the Next-Gener-
ation Technical Computing unit at Fujitsu Limited, and
a research fellow at Fujitsu Laboratories Limited. His re-
search interests are in high-performance cluster system
architectures, especially high-performance communica-
tion, and large-scale computing architectures. Sumimoto
received a PhD in electrical engineering from Keio Univer-
sity. He is a member of IPSJ. Contact him at s-sumi@labs.
fujitsu.com.

Toshiyuki Shimizu is a director in the Next-Generation
Technical Computing unit at Fujitsu Limited. His research
interests include high-performance computer system archi-
tectures, particularly interconnect architectures for highly
scalable systems. Shimizu is a member of IPSJ and the In-
stitute of Electronics, Information, and Communication
Engineers. Contact him at t.shimizu@jp.fujitsu.com.

synchronization sequence. This floating-point calculation
method was developed by the Petascale System Intercon-
nect project sponsored by Japan’s Ministry of Education,
Culture, Sports, Science and Technology, and was pre-
viously implemented in the Highly Functional Switch of
Fujitsu’s FX1 supercomputer.8

H
igh-performance computing systems are
becoming denser, leaner, and more inte-
grated, making it increasingly challenging to
manage and repair failures. By effectively iso-
lating components that require maintenance

and repair, the Tofu interconnect architecture prom-
ises to be a fundamental technology for future exascale
systems.

Barrier
gate 0

Barrier channel 0

Barrier
gate 32

Barrier
gate 33

Barrier
gate 34

Barrier
gate 0

Integrated collective function

User process

Synchronization acknowledgeInvocation request

Barrier packets to and from other nodes

Figure 6. Example of four barrier gates operating and connected to a barrier
channel. This chain of barrier gates repeats transmission and reception of a
barrier packet four times to synchronize 16 nodes.

Our experts.
Your future.

www.computer.org/byc

