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Abstract 

The memory wall and global data movement have become the dominant performance bottleneck for 

many scientific applications. New characterizations of data access streams and related benchmarks to 

measure their performances are therefore needed to compare HPC systems, software, and programming 

paradigms effectively.  In this paper, we introduce a novel global data access benchmark, Apex-Map. It is a 

parameterized synthetic performance probe and integrates concepts for temporal and spatial locality into its 

design.  We measured Apex-Map performance for a whole range of temporal and spatial localities on sev-

eral advanced processors and parallel computing platforms and use the generated performance surfaces for 

performance comparisons and to study the characteristics of these different architectures. We demonstrate 

that the results of Apex-Map clearly reflect many specific characteristics of the used systems. We also 

show the utility of Apex-Map for analyzing the performance effects of three leading parallel programming 

models and demonstrate their relative merits.1

1. Introduction 

During the last decades the memory wall between the peak performance of microprocessors and their 

memory performance has become the prominent performance bottleneck for many scientific application 

codes.  Despite this development many benchmarking efforts in scientific computing have in the past fo-

cused on measuring the floating-point computing capabilities of a system.  One prominent example is the 

Linpack benchmark, which is used to rank systems in the TOP500 Project [1].  These benchmarks can pro-

vide guidance for the performance of some compute intensive applications, but fail to provide reasonable 

guidance for any memory-bound applications.  This situation has increased the interest in new concepts and 

benchmarks for describing and measuring the data access capabilities of modern parallel computer systems.  

In this paper, we introduced a novel synthetic memory access probe, called Apex-Map [2], to measure 

global data access performance.  Apex-Map is designed based on parameterized concepts for temporal and 

spatial locality and generates a global data access stream according to specified levels of these measures of 

locality. In our current approach we focus solely on the performance effects of data access and ignore any 

potential situations where the details of the actual computation or data dependencies determine overall per-

formance. We also assume that the execution of an application can be broken down in different phases with 

different characteristics. Further, we assume that combining multiple data access streams, each of which 

can be characterized independently, can approximate the global memory access of each computational 

phase. The characterization currently used for Apex-Map has three descriptive parameters, the global 

memory size M used, a measure  for temporal locality, and a measure L for spatial locality.  Ideally the 

execution profile of Apex-Map can be tuned by this set of input parameters to match the data access char-
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acteristics of a chosen scientific application. This would allow using Apex-Map as a performance proxy for 

the actual application code.  

Other synthetic benchmarks measuring data movement include STREAM [3], which measures sustain-

able local memory bandwidth. It focuses on highly regular data access patterns for sequential processes, 

which limits its use to single shared memory nodes. Using Apex-Map with asymptotically large L parame-

ters on single processors should generate equivalent performance numbers to STREAM.  Recently, the 

HPC Challenge benchmark [4] has included the RandomAccess benchmark, to measure the rate of integer 

random updates of memory. RandomAccess focuses on uniform random global data access and could be 

seen as an opposite data access benchmark compared to STREAM. Using =1 and L=1 for Apex-Map 

should allow us to generate a very similar data access pattern, as it is also a uniform random single word 

access stream. The main difference is, that RandomAccess uses global write operations and Apex-Map uses 

only global read operations. MAPS [5] also measures the bandwidth for a variety of kernels on a specific 

machine but only for single processors. 

One feature that distinguishes Apex-Map from many other benchmarks is that its input parameters can 

be varied independent of each other between extreme values. This allows to generate continuous perform-

ance surfaces which can be used to explore the performance effects of all potential values of the character-

izing parameters. By examining these surfaces, we can understand how changes in spatial or temporal lo-

cality affect the performance and which factors are more important on a specific system. Moreover, we can 

compare these performance surfaces across different platforms and explore the advantages and disadvan-

tages of each platform. Most current benchmark suites (HPCC [4], NAS [6], and SPEC [7]) only contain 

several application codes which strongly limits the scope of performance behaviors they can explore. The 

results of these application benchmarks provide very good indications how similar applications will per-

form. However, these benchmarks are not very helpful for other applications. 

With the increasing complexity and concurrency levels of parallel systems the utility and performance 

of different parallel programming models have become of major interest. Parallel programming paradigms 

differ from each other substantially in their ability to exploit the potential performance of the underlying 

hardware and in their implementation overheads.  Apex-Map is based on a synthetic problem and can easily 

be implemented in different parallel programming models. So far we have implemented Apex-Map with 

MPI, the most popular parallel programming model, and two less used but promising programming models, 

SHMEM and UPC.  In MPI, each process has its own address space. The communication between proc-

esses is carried out by send-receive pairs.  In SHMEM, each process also has its own address space, but 

they are symmetric and communication is one-sided. UPC provides a shared address space to the pro-

grammer. The shared data can be accessed by regular load and store operations. In this paper, we are going 

to examine how the achievable performance in Apex-Map is affected by these programming models rela-

tive to temporal locality and spatial locality.  

In the following section, we describe the details of both the sequential and the parallel implementations 

of Apex-Map. The performance of several widely used microprocessors is analyzed using Apex-Map re-

sults in Section 3. Section 4 focuses on the performance comparison of several currently deployed high 

performance computing platforms, showing the strength and weakness of each platform. In section 5 we 

examine the performance effect of different programming models. Finally, we summarize our results and 

discuss our ongoing and future work. 

2. Apex-Map Implementation 

2.1 Principals 

The synthetic memory access probe Apex-Map is designed based on parameterized concepts for temporal 

and spatial locality.  It uses a blocked data access to a global array of size M to simulate the effects of spatial 

locality. The block length L is used as measure for spatial locality and L can take any value between 1 (single 

word access) and M. A non-unifom random selection of starting addresses for these blocks is used to simulate 

the effects of temporal locality.  A power function distribution is selected as non-uniform random distribution 

and non-uniform random numbers X are generated based on uniform random numbers r with the generating 

function X=r1/ .  The characteristic parameter  of the generating function is used as measure for temporal 

locality and can take values between 0 and 1. A value of  =1 generates uniform random numbers while small 

values of  generate random numbers centered towards the starting address of the global data array. 
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Apex-Map uses the same three main parameters for both the sequential version and parallel version. 

These are the global memory size M, the measure of temporal locality , and the measure of spatial locality L. 

These three parameters are related to our methodology to characterize applications. For the parallel version, 

an important question is whether the effects of temporal locality and process locality should be treated inde-

pendent of each other by implementing different parameters and executions models for them, or if a global 

usage of the temporal locality model can provide a sufficient first approximation of the data access behavior 

of scientific application kernels. For the parallel execution of a single scientific kernel any method to divide 

the problem to increase process locality should also be usable to improve temporal locality on a sequential 

execution.  At the same time any algorithm with good temporal locality should on a global parallel implemen-

tation in turn exhibit good process locality.  Thus the only cases where process and temporal localities can 

differ substantially, would be algorithms for which the problem solved in each process is different from the 

problem between processes. Examples would be e.g. the embarrassingly parallel execution of a kernel with 

low temporal locality by running multiple copies of the individual problem with different parameters at the 

same time and thus generating high process locality.  For simplicity reasons we therefore decided to treat 

temporal and process locality in a unified way by extending the sequential temporal locality concept to global 

memory access in the parallel case.  One important implementation detail here is that we access the global 

array only with load operations, which avoids any possibility of race conditions for memory update opera-

tions.  Comparisons between APEX-Map performance and other known benchmarks such as Ping-Pong can 

be found in [8]. 

Temporal locality in actual programs can be caused by different reasons.  In some cases (e.g. a blocked 

matrix-matrix multiplication) variables are not used for long periods of time but once they are used they are 

reused in close time proximity multiple times. Overall, however, all variables are accessed with equal fre-

quency.  In other codes (e.g. matrix-vector multiplication) some variables are simply accessed more often 

than others (in our example the elements of the original vector).  Exploiting these different flavors of tempo-

ral locality in the sequential case requires different caching strategies such as dynamic caching if our first 

example and static caching in our second example. In practice dynamic caching is used almost exclusively as 

it tends to work reasonable well also in many (but not all!) situations, which conceptually would require static 

caching.  APEX-Map clearly uses more frequent accesses to certain addresses to simulate the effects of tem-

poral locality.  In the parallel case the difference between these flavors becomes more important as placement 

(and possibly sharing) of data and their affinity to processes becomes a performance issue.  In APEX-Map we 

assume that each process accesses certain variables more often and that these variables can be placed in 

memory closer to this process. We do not address the different question how to address and exploit temporal 

locality in cases where overall all variables are accessed with equal frequency and thus data placement is an 

ineffective strategy for exploiting temporal locality.  APEX-Map also assumes that sharing of variables is not 

a performance constraint, as we are only reading global data but do not modify them. More discussions about 

the rational of the APEX-Map parameters can be found in [9].  

2.2 Sequential Implementation 

Apex-Map uses indexed access to simulate random access streams as illustrated in Fig. 1. The random 

starting addresses (X) are aligned by length L and generated by a power distribution function whose shape 

is controlled by the temporal locality parameter , which can take values between 0 and 1. Once the starting 

address has been accessed, the following L-1 continuous addresses will also be accessed in a stride 1 loop.  

The starting addresses cannot be dynamically generated during execution since the time needed to gener-

ate them is too long compared with the memory access times. Therefore the addresses are computed in ad-

vance and stored in an index buffer. The left side of Table 1 shows the core part of the sequential Apex-Map 

code: A compute module is essential since Apex-Map measures the capability of the system to feed global 

X

L L

M-1 

X

Fig. 1: The Data Access Model of Apex-Map 
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Table 1: The Outline of the Apex-Map Implementations 

data into the CPU not only the cache or memory so that the reported performance reflects the effect of whole 

memory architecture. The details of the computation chosen for the compute module should however not in-

fluence performance. The current operation in this module shown in the third column of Table 1 is the global 

sum of all accessed array elements. The effect of the temporal locality parameter  on cache hit and miss rates 

is illustrated in Fig. 2 for a ratio of cache size to used memory of 1:256.  
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Fig. 2: Effect of alpha on hit/miss rates and ratio of local to remote data requests for a local:remote 

memory ratio of 1:256 

The performance measurements reported by APEX-Map are the average access time per memory access 

in cycles and the corresponding bandwidth in MB/s. In the sequential version Apex-Map also reports the 

standard deviation for the access times. The parameters I (buffer size) and N (repetitions) are auxiliary pa-

rameters and should be set to appropriate values to achieve reliable results. On some platforms due to ineffi-

ciencies of the compilers, the inner loop needs to be manually unrolled several times to achieve best perform-

ance. Therefore, in our sequential experiments, the inner loop has been unrolled 1, 2, 4, or 8 times and only 

the best results are reported. 

Sequential Parallel Compute Module 

Repeat N times 
     InitIndexArray_seq(I); 

     CLOCK (start); 

     for(j = 0; j < I; j++) { 

        pos  = ind[j]; 

        compute(data[pos : pos+L-1]); 

     } 

    CLOCK (end); 

    RunningTime += end – start; 

End Repeat    

Repeat N times 
     InitIndexArray_par(I); 

     CLOCK (start); 

     for(j = 0; j < I; j++) { 

        pos= ind[j]; 

        if  (remotel data) 

            GetRemoteData 

        endif 

        compute(data[pos : pos+L-1]); 

     } 

    CLOCK (end); 

    RunningTime += end – start; 

End Repeat    

compute(data[pos : pos+L-1);  
      

     for(k = 0; k < L; k++) { 

        

        sum += data[pos+k]; 

     }  
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2.3 Parallel Implementation  

The parallel implementation uses the same concept as the sequential version. Its outline is shown in 

Table 1. In the parallel implementation, the global data is evenly distributed across all the processes in a 

block distribution. Each process computes its own global address-stream using the same power distribution 

function. However, these global addresses will be adjusted based on the rank of the process by shifting the 

computed address with the beginning address of the processes global array portion. This ensures that each 

process accesses its own memory with the highest probability. Then, for each index it is tested, if the ad-

dressed data resides in local memory in which case the computation proceeds immediately, or if it resides 

in remote memory in which case it is fetched into local memory first. The frequency with which remote 

data access occurs is mainly determined by the temporal locality parameter . For example, for 256 proc-

esses and  =1 the data accesses follow a uniform random distribution and the percentage of remote access 

is 255/256 (=99.6%) (Fig 2). With the increase of temporal locality, the percentage reduces to 0.55% when 

 = 0.001.  

The major implementation issue for the parallel version of Apex-Map is the question how to fetch re-

mote data. Conceptually we do allow out of order execution, which presents a major possibility for opti-

mizing the execution.  However, how remote data can be fetched and if an effective out of order execution 

model can be implemented depends heavily on the parallel programming model used. Currently, Apex-Map 

is implemented with three parallel programming models: MPI, SHMEM, and UPC [10]. MPI2 would also 

allow one-sided message passing similar to the functionality of SHMEM, but we have not yet had the op-

portunity to implement APEX-Map in it. The major differences in our implementations for these three par-

allel programming paradigms are shown in Table 2.  

Table 2: The MPI, SHMEM, and UPC implementation 

MPI SHMEM UPC 

Repeat N times 
     InitIndexArray_par(I); 

     CLOCK (start); 

     for(j = 0; j < I; j++) { 

        pos= ind[j]; 

        if  (remotel data) 

          Generate_Remote_Request() 

        else 

          Compute(data[pos: pos+L-1]) 

       endif 

       Serve Incoming Requests() 

       Process Replies()

     } 

    CLOCK (end); 

    RunningTime += end – start; 

End Repeat    

CLOCK (start) 

WaitForFinish() 

CLOCK (end) 

RunningTime += end – start

Repeat N times 
   InitIndexArray_par(I); 

   CLOCK (start); 

   for(j = 0; j < I; j++) { 

      pos= ind[j]; 

      if  (remotel data) 

         SHMEM_DOUBLE_GET(p) 

         Compute(p[0: L-1]) 

      else 

        Compute(data[pos: pos+L-1]); 

      endif 

   } 

  CLOCK (end); 

  RunningTime += end – start; 

End Repeat    

Repeat N times 
     InitIndexArray_par(I); 

     CLOCK (start); 

     for(j = 0; j < I; j++) { 

       pos= ind[j]; 

       if  (remotel data) 

          // Method 1 

         UPC_MEMGET(p) 

         Compute(p[0 : L-1]) 

         // Method 2 

         Compute(data[pos:pos+L-1]) 

      else 

         Compute(data[pos:pos+L-1])  

     endif

     } 

    CLOCK (end); 

    RunningTime += end – start; 

End Repeat    

Due to the one-sided communication, fetching the remote data in SHMEM is straightforward and is 

implemented by calling the SHMEM_DOUBLE_GET function, which results in messages of size L. For 

UPC, there are two options. Like in SHMEM, in UPC, a process can also call a function UPC_MEMGET 

to bring all the remote data into its local memory at once. Another way is to take advantage of the shared 

memory model by allocating the global data array in shared mode and accessing it directly. 

The MPI implementation is much more complicated mainly due to its two-sided communication model. 

Since the message addresses in Apex-Map are generated based on a non-uniform random access, non-

blocking, asynchronous MPI functions are used to avoid blocking and deadlock. Not only does a process 

have to send requests for data out, but also it has to prepare to receive the replies and process them. Mean-

while, a process also has to check for incoming requests to serve data to the other processes. Therefore, 
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even if a process has finished its own work, it still needs to wait for all others to finish in case some other 

processes may request data from it. All these operations can incur substantial overheads. 

There are also different implementations imaginable. One possibility is to aggregate the remote re-

quests instead of sending them one by one. We explored several different strategies to do this in depth, but 

however had to conclude, that we ended up only benchmarking our inventiveness for new algorithms to 

assemble and exchange these messages and our skills to implement them. This approach not only further 

complicates the code, but in the end also conflicts with our locality concept. By extensively rearranging the 

order of data-accesses the actual executed address stream will no longer show the intended features to 

achieve the given localities. In effect such rearranging would substantially change the actual localities from 

the intended localities and would go contrary against our design principles.  We therefore decided not to 

permit such message aggregation and to exchange messages for each remote access. However, we permit 

multiple outstanding requests for data and out-of-order processing of the received data. 

3. Performance Analysis for different Processors 

In this section, we are going to analyze the performance of some widely used processors. Different 

from other benchmarks, which usually provide only several performance points, Apex-Map can generate 

continuous performance surfaces (performance maps) over a whole range of temporal and spatial locality 

values. These surfaces can be used to study the effects of varying temporal and spatial locality and provide 

insight into architectural designs. The typical values we use to generate these maps are  = [0.001 to 1.0],  

L = [1 to 65536] words, and M = 64 MWords (512 MB).  In cases of insufficient memory, half of the avail-

able memory size is used.  = 1.0 means the global data access follows uniform random access while 

=0.001 indicates the accessed data inherits very high temporal locality. Therefore increasing the value of 

will reduce the temporal locality. On the contrary, increasing the value of L will increase the spatial local-

ity. We have obtained results for IBM PowerPC 440 (700 MHz), Power3 (375 MHz), Power4 (1300 MHz), 

Power5 (1.9 GHz), Intel Itanium2 (1.5 GHz), Xeon (2.2 GHz), AMD Opteron (2.2 GHz), Cray X1 (800 

MHz), and NEC SX6a (565 MHz).  
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Fig. 3: The performance surface for Itanium II Fig.  4: The performance surface for Cray X1 

3.1 Superscalar processor vs. Vector processor 

 As an example, Fig. 3 and Fig. 4 display the performance surfaces for a superscalar processor, the Ita-

nium II, and a vector processor, the Cray X1. The Z-axis shows average cycles per data access in log-scale.  

The performance surfaces of these two kinds of processors differ significantly from each other.  For the 

Itanium, both the temporal locality and the spatial locality affect the performance substantially.  The worst 

performance occurs when both temporal locality and spatial locality reach the lowest point we have tested 

(  = 1, L = 1), for which around 100 cycles are needed per data access.  Increasing either the temporal lo-

cality or spatial locality reduces the average number of cycles per data access needed.  The Itanium II needs 

only 0.77 cycles for  = 0.001 and L = 2048. Further increasing the spatial locality does not improve per-
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formance much.  Further we can find that temporal locality and spatial locality can be substituted for each 

other to some degree.  The line of equal access speed of Z=10 illustrates this as it is almost diagonal.  A 

reduction of temporal locality could be compensated by an increase in spatial locality and vice versa.  

For the Cray X1, the spatial locality affects the performance much more prominently. The X1 can eas-

ily tolerate a decrease in temporal locality but is very sensitive to the loss of spatial locality (and the corre-

sponding reduction in vector-length). The differences between these two kinds of performance surfaces 

clearly reflect their different design concepts. Superscalar processors depend on the elaborate cache and 

memory hierarchies to take advantage of both temporal and spatial locality while vector processors typi-

cally have sophisticated memory access sub-systems which makes them insensitive to the lack of temporal 

locality and programmers therefore only have to focus on expressing and exploiting spatial locality.  

3.2 Uniform Random Access (  = 1.0)  

For examining the performance of Apex-Map on a variety of processors we have to focus on more spe-

cific parameters values, since it is difficult to visualize all the data. We show results for two values of ,

= 1.0 (uniform random access) and  = 0.01 (high temporal locality). Fig. 5 shows the obtained bandwidth 

when the data access follows uniform random access pattern (  =1). The two vector processors, Cray X1 

and SX6a, deliver far superior bandwidth to the other processors once spatial locality is above 16. For L = 

65536, the SX6a achieves a 9 times higher bandwidth than Power5 though its CPU clock speed is more 

than 3 times slower. When the spatial locality is relatively lower (L <= 16), the performance of the two 

vectors platforms falls behind of the Itanium2 and Opteron, close to the Power5 and Xeon, but still better 

than the older Power4, Power3, and PowerPC. The bandwidth obtained on the Power3 is the lowest, at least 

5 times worse than the others for smaller values of L. With the increase of spatial locality, its performance 

improves and it catches up with the PowerPC at L = 1024, before falling off again. 

The performances of the superscalar processors are shown in Fig. 6 with a linear axis to allow a more 

detailed view of how their performances compare with each other. The Opteron performs best before L 

reaches 2048. Then, its performance drops like a staircase and finally descend to the Power4 level. The 

Itanium2 performs very close to Opteron for small L. However, with the increase of spatial locality, the gap 

between them becomes larger. In the end, its performance exceeds the Opteron due to the performance 

plunge of the Opteron. For lower spatial locality, the performance of the Power5 is behind the Opteron and 

Itanium but close to the Xeon and Power4. It excels when the value of L is been increased to 128 and 

achieves highest bandwidth after L becomes larger than 4096. The performance of the Xeon and Power4 

are close to each other. They also share a similar pattern, going up with the increase of L and then falling 

down after 1024. The PowerPC performs a little better than the Power3. 
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3.3 Higher Temporal Locality Case (  = 0.01) 

The delivered bandwidths for  = 0.01 are displayed in Fig. 7.  Compared with  = 1.0, the data access 

has much higher temporal locality. Once again, the two vectors processors achieve asymptotically higher 

performance than any superscalar processors. This time the performance of the vector processors are simi-

lar to each other. For lower spatial locality (and vector length), all the superscalar processors outperform 

the vector processors. This can be attributed to the complicated hierarchical design of memory systems of 

superscalar processors, which enables them to efficiently reuse the data due to its high temporal locality. 

With the gradual increase of the spatial locality, the vector processors performance improves very quickly 

and exceeds all superscalar processors.  

The performances of the superscalar processors are plotted on a linear scale in Fig. 8. The Opteron fol-

lows the same pattern as in the  = 1.0 case. It performs best up to L = 512 but is exceeded by the Power5 

thereafter. This time the Itanium2 gets the highest bandwidth for large values of L. The performance of the 

Power4 is still in the middle among these processors.  The performance of the Xeon drops sharply when 

spatial locality increases beyond 4096. The older Power3 and the PowerPC still show the lowest perform-

ance, but this time, the Power3 performs better than the PowerPC possibly due to its larger cache sizes. 

In a summary, vector processors behave very differently from superscalar processors. They are sensi-

tive to the spatial locality and insensitive to temporal locality while superscalar processors are sensitive to 

both temporal locality and spatial locality, which often can substitute each other. Current vector processors 

can deliver far superior bandwidth to scalar processors for data streams with high spatial locality.  On the 

other hand, for data stream with low spatial locality some superscalar processor show superior performance. 
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Among the superscalar processors, the Opteron often provides higher bandwidth than the Intel and 

IBM processors when the data stream does not have very high spatial locality. For high spatial localities the 

Power5 or the Itanium2 perform best.  Which of these two is better really depends on the characteristics of 

the data access stream.  The Power4 and Xeon usually follow behind closely, but in several cases when 

spatial locality is low, their performance may even outperform the Power5 or Itanium. The older Power3 

and the low-power PowerPC provide the lowest bandwidth.   

4. Performance Analysis for HPC Multiprocessor Platforms 

In this section, we are going to analyze the performance of several high-performance computing plat-

forms that are currently being deployed either as production platform or as cutting-edge test systems. Table 

3 lists some features of these systems. The results are obtained using the MPI implementation as it is the 

only commonly available parallel programming paradigm. We use the same range of values for the tempo-

ral and spatial localities as in the sequential version,  = 0.001 to 1.0 and L =1 to 65536 Words. The global 

data size M becomes 64Mwords * P so that each process uses a local memory size of 64Mwords. P is the 

number of processes and by default we present results for 256 processes.  The output of Apex-Map we used 

is the obtained bandwidth (MB/s) per process. Next we are going to compare several interesting cases.

Table 3: Some Features of the Systems Used

Name CPU CPUs/

Node 

Network Memory Band-

width

Site

Seaborg Power3 375 MHz 16 IBM Colony-II 

1GB/s/node

16GB/s/node

1GB/s/processor

NERSC

Cheetah Power4 1.3 GHz 32 IBM Federation 

4GB/s/node

44GB/s/node

1.375GB/s/processor

Oak Ridge

BG/L PowerPC440

700 MHz 

2 3-D Torus, 2.1GB/node  

Global Tree, 2.1GB/node 

Global Interrupt 

5.5 GB/s/processor Argonne 

Cray X1 Cray X1, 800 MHz 4 Cray 2-D Torus,  

25GB/s/node

25.6GB/s/MSP Oak Ridge

Jacquard Opteron, 2.2 GHz 2 Infiniband,  

1GB/s/node

6.4GB/s/processor NERSC 

Thunder Itanium2, 1.4 GHz 4 Quadrics,  

1 GB/s/node 

6.4GB/s/processor LLNL 

Altix Itanium2, 1.5 GHz 2 Fat-tree, NUMALink  

6.4GB/link

6.4GB/s/processor  Oak Ridge
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4.1 Vector Platform vs. Superscalar Platform 

As a first example we analyze the performance surfaces for two of the systems, Cheetah in Fig. 9 and 

Phoenix in Fig. 10. Cheetah is a superscalar platform based on the Power4 while Phoenix is the Cray X1 

vector platform. Again, the parallel performance surfaces exhibit similar differences between vector and 

superscalar platforms as for the sequential results.  For Cheetah, the area of highest performance is of rec-

tangular shape and clearly elongated parallel to the spatial locality axis while for the Cray system it is elon-

gated parallel to the temporal locality axis. The IBM system can tolerate a decrease in spatial locality more 

easily but is much more sensitive to a loss of temporal locality. This reflects the elaborate cache and mem-

ory hierarchy on the individual nodes as well as the global system hierarchy which also heavily relies on 

reuse of data as the interconnect bandwidth is substantially lower than the local memory bandwidth. The 

Cray system can tolerate a decrease in temporal locality much better but is sensitive to a loss in spatial lo-

cality. This reflects an architecture which depends very little on local caching of data and an interconnect 

bandwidth equal to local memory bandwidth. To see such a clear signature of the Cray architecture is even 

more surprising considering that we us an MPI based benchmark, which does not fully exploit the capabil-

ity of this system. 
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Fig. 9: The performance surface for Cheetah Fig. 10: The performance surface for Phoenix 

4.2 Overall Comparison 

Fig. 11 lists the achieved per processor bandwidth on all platforms when  = 1.0. Seaborg delivers the 

worst bandwidth per processor across all the values of spatial locality, almost an order of magnitude lower. 

For high spatial locality, the vector platforms deliver far superior bandwidth than other platforms, benefit-

ing from both the vector computing units and underlying faster interconnects. BlueGene/L performs a little 

better than Altix but very close to each other. Jacquard is an Opteron cluster connected by Infiniband 

switch. Each node has two processors. Its performance suddenly drops when L changes from 1024 to 2048. 

This is directly related with the buffer management in MPI implementation. Infiniband requires that mem-

ory must be pinned before communication is initiated. The MPI communication on Jacquard uses different 

protocols depending on the size of the message. The threshold is 1536 words. If message size smaller than 

this value, it copies data in and out of pre-allocated buffers that are registered by MPI at startup. For large 

messages, the data will be sent directly from the user-specified buffer on the sender to the user-specified 

buffer on the receiver. MPI has to dynamically register the user buffer.  Dynamic registration is very ex-

pensive causing the performance plummet. But its performance is still comparable with BlueGene and 

Altix and much better than Cheetah. 
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Fig. 11: Achieved bandwidth on all platforms for uniform data distribution using 256 processors. 

For lower spatial locality, Altix performs best in most of the cases. Following Altix, Jacquard, Cheetah, 

and Bluegene are very close and Phoenix is a little behind. Overall, the bandwidths delivered on all plat-

forms in this case are very low.   

4.3 Scaling Study 

Finally, let’s take a look of the scalability of all platforms. We focus on the low temporal locality case (  = 

1.0), the most difficult case. Scaling will become much easier for high temporal locality cases. Fig. 12 and 

Fig. 13 display the average bandwidth delivered per processor on all platform when L=4096 and L= 1 indi-

vidually. Therefore, on a perfect scaling platform, the per processor bandwidths should be a horizontal line 

across the number of processors. The faster they go down, the worse the scalability. 

The architectural effects of  SMP nodes can be seen on Seaborg, Cheetah, Thunder, and Jacquard in 

Fig. 12. Inside a SMP (Cheetah up to 32, Seaborg up to 16, Thunder up to 4, and Jacquard up to 2) the scal-

ing is not bad. After we use more than one SMP, the scaling degrades immediately but gradually recover 

with the increase of the number of SMPs. Especially for Jacquard, its asymptotic scaling behavior is much 

better than Seaborg and Cheetah.  BlueGene scales very well and its performance drop on 64 processors is 

related to the architecture. Apex-Map runs in co-processor mode, i.e., one cpu inside a node will be dedi-

cated to communication. Therefore we actually require 64 nodes in this case. With 64 nodes request, the 

scheduler will only assign a smaller partition with a mesh network not a torus. With 32 nodes partitions, 

you are remaining on a board, with 64 nodes partitions you are across boards. With 256 nodes partitions, 

we get full midplanes. If we require a larger partition and run Apex-Map again using 64 nodes only, the 
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Fig. 13: The total aggregate bandwidth for L=1 and  

 = 1.0 
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performance drop will disappear. In general the results of Apex-Map can reflect many specific characteris-

tics of the underlying platform. 

The scaling performance for L = 1 is displayed in Fig. 13. In this case, the latency will become more 

important than bandwidth due to the short message size. This effect is reflected from the changes of the 

position order among these systems. In terms of scaling, BlueGene does not scale as well as in Fig. 12. But 

Cheetah improves a lot, especially when compared with Seaborg. Though the scalability is good for Thun-

der after the SMP threshold, its absolute performance still stays low. 

5. Effect of Different Parallel Programming Paradigms 

All previous parallel results were obtained with the MPI implementation of Apex-Map. However, due 

to its two-sided communication model, MPI is not so efficient to exploit the full potential of the underlying 

hardware. In this section, we are going to analyze the effect of different parallel programming models. We 

have implemented Apex-Map in two other promising paradigms, SHMEM and UPC. We are going to ana-

lyze the performance of these three programming models on Phoenix and Altix. 

5.1 SHMEM vs. MPI 

The performance ratios between SHMEM and MPI on Phoenix and Altix are shown in Fig. 14 and Fig. 15. 

On Cray X1, SHMEM always performs better than MPI. For areas with high spatial locality, where the 

long messages dominate the performance, SHMEM delivers 1 to 5 times higher bandwidth. This is also the 

case for areas with high temporal locality where the local memory access dominates the performance. 

However, as we decrease either the temporal locality or spatial locality, approaching the lower-left corner, 

the advantage of SHMEM becomes more and more prominent. In the best case, it can deliver 25 times bet-

ter performance than MPI. The lower-left corner is the area with the lowest temporal locality and lowest 

spatial locality. Achieving good performance in this corner is notoriously difficult. The SHMEM program-

ming model exhibits much more power to extract performance from the underlying hardware. 

Surprisingly, on the Altix, SHMEM performs worse than MPI at the lower-right corner. We are cur-

rently investigating this anomaly. For all other areas, SHMEM is better. For the areas with large spatial 

locality, SHMEM performs around 1.5 – 2.5 times better. The place where SHMEM really excels is the 

area where the temporal locality is very high and spatial locality is relatively lower. When a data stream has 

high temporal locality, data access on this platform has become very efficient due to the hierarchical mem-

ory design. At this time, the MPI overhead induced by checking incoming requests, managing receive buff-

ers, and calling non-blocking, asynchronous functions will become very expensive and significantly hurt 

the performance while SHMEM does not have such kind of overheads.  
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Fig 14: The bandwidth ratio between SHMEM 

and MPI on Cray X1 

Fig. 15: The bandwidth ratio (log-scale) be-

tween SHMEM and MPI on Altix 
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5.2 UPC vs. SHMEM 

UPC is also a single program multiple data programming model similar to MPI. But a major difference 

is that it provides a shared address space as well so that the “shared” data can be accessed by regular load 

and store operations. In our implementation of Apex-Map, the global data is allocated in the shared space 

and each process owns a chunk of the global data locally. The performance ratio between UPC and 

SHMEM is displayed in Fig. 16. UPC can perform 4 to 9 times better than SHMEM on the left side for low 

spatial locality area. This is mainly due to the underlying hardware that supports direct cache-line-size load 

operations from remote nodes. Compared with SHMEM, UPC does not need to pay any message overhead. 

However, with the increase of spatial locality, this advantage disappears gradually. The performance of 

UPC becomes even inferior to SHMEM at the right side where long messages dominate. In the worst case, 

UPC only delivers 70% of the SHMEM performance. The message overhead can well be recovered if large 

chunk of data can be moved together. UPC provides a similar function UPC_MEMGET to SHMEM func-

tion SHMEM_DOUBLE_GET. If we use UPC_MEMGET, the performance for long messages can im-

prove substantially. The result indicates that it can even perform a little better than SHMEM. However, this 

implementation of Apex-Map is not efficient for short messages. 
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Fig. 17: The bandwidth ratio between UPC 

and SHMEM on Altix (log-scale) 

The comparison ratio (in log-scale) between UPC and SHMEM on Altix is shown in Fig. 17. For that 

small area, upper-left in yellow color, the UPC performance could be astonishingly higher than SHMEM. 

This is perhaps related with the efficient cache design in the Itanium2 microprocessor to support data reuse. 

However, with the decrease of either the temporal locality or spatial locality, the performance drops sharply.  

In most of the cases, the performance of UPC falls behind SHMEM. In the worst case, UPC delivers 7 

times lower bandwidth. Though using the block transfer function UPC_MEMGET helps when spatial lo-

cality is high, but this time the UPC performance never catches up with SHMEM. The different results on 

Phoenix and Altix indicate that the relative performance of UPC to SHMEM is really dependent on the 

UPC implementation and the underlying hardware support.  

In summary, SHMEM usually performs better than MPI due to its efficient one-sided communication. 

On Phoenix, the biggest difference occurs when both the temporal locality and spatial locality reaches their 

lowest points while on Altix, it happens when spatial locality is lower but temporal locality is higher. Most 

of the times, UPC performs better than SHMEM when spatial locality is low due to efficient load/store op-

erations. But when a data stream has high spatial locality, its performance is closely related with the im-

plementation and underlying hardware. 
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6. Summary and Future Work 

In this paper, we have introduced a novel benchmark, which focuses on global data access and meas-

ures how fast global data can be loaded into the CPU. It has three parameters, the global memory size M 

used, the temporal locality , and the spatial locality L. By varying these parameters, we can analyze the 

performance characteristics of processors or parallel computing systems in this multidimensional space.  

The results clearly reflect the different design principles between vector and superscalar platforms. The 

performance of superscalar platforms is sensitive to both temporal and spatial locality. These two kinds of 

localities can compensate each other to some degree. The performance of vector platforms is strongly sen-

sitive to spatial locality and much less sensitive to temporal locality.  

Apex-Map results also reflect many specific performance characteristics of the underlying platforms. 

They show the SMP scaling effect on all systems with SMP nodes and the partition effect for the 64-

processor case on BlueGene.  Apex-Map can also help to identify the MPI implementation strategies, such 

as the switch from eager to rendezvous mode on Phoenix and the memory register policy on Jacquard. 

The Apex-Map results also indicate that the parallel programming languages significantly affect the 

delivered performance. To which degree depends on the specific platform and the characteristics of the 

accessed data stream. In most of the cases, SHMEM performs better than MPI. UPC could even perform 

significantly better than SHMEM on Phoenix, especially for low spatial locality data access.  

We are also investigating methods to characterize parallel applications with Apex-Map parameters. In 

our earlier work, we have successfully characterized several sequential scientific kernels [8] this way. Such 

a characterization would allow us to use Apex-Map as a performance proxy for real scientific applications. 
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