
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2003; 15:803–820 (DOI: 10.1002/cpe.728)

The LINPACK Benchmark:
past, present and future

Jack J. Dongarra1,∗,†, Piotr Luszczek1 and
Antoine Petitet2

1University of Tennessee, Department of Computer Science, Knoxville,
TN 37996-3450, U.S.A.
2Sun Microsystems, Inc., Paris, France

SUMMARY

This paper describes the LINPACK Benchmark and some of its variations commonly used to assess the
performance of computer systems. Aside from the LINPACK Benchmark suite, the TOP500 and the HPL
codes are presented. The latter is frequently used to obtained results for TOP500 submissions. Information
is also given on how to interpret the results of the benchmark and how the results fit into the performance
evaluation process. Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: benchmarking; BLAS; high-performance computing; HPL; linear algebra; LINPACK; TOP500

1. INTRODUCTION

The original LINPACK Benchmark [1] is, in some sense, an accident. It was originally designed to
assist users of the LINPACK package [2] by providing information on the execution times required to
solve a system of linear equations. The first ‘LINPACK Benchmark’ report appeared as an appendix
in the LINPACK Users’ Guide in 1979 [2]. The appendix comprised of data for one commonly used
path in the LINPACK software package. Results were provided for a matrix problem of size 100, on a
collection of widely used computers (23 computers in all). This was done so users could estimate the
time required to solve their matrix problem by extrapolation.

Over the years additional performance data was added, more as a hobby than anything else, and today
the collection includes over 1300 different computer systems. In addition to the increasing number
of computers, the scope of the benchmark has also expanded. The benchmark report describes the

∗Correspondence to: Jack J. Dongarra, University of Tennessee, Department of Computer Science, Knoxville, TN 37996-3450,
U.S.A.
†E-mail: dongarra@cs.utk.edu

Contract/grant sponsor: Office of Energy Research, U.S. Department of Energy; contract/grant number: DE-AC05-96OR22464
Contract/grant sponsor: University of Tennessee

Received 24 December 2001
Copyright c© 2003 John Wiley & Sons, Ltd. Revised 2 July 2002



804 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

Table I. Overview of nomenclature and rules for the LINPACK suite of benchmarks. The LINPACK
1000 Benchmark is also known as Toward Peak Performance (TPP) or Best Effort. The Highly-
Parallel LINPACK (HPLinpack) Benchmark is also known as the N × N LINPACK Benchmark

or High Parallel Computing (HPC).

Matrix Optimizations
Benchmark name dimension allowed Parallel processing

LINPACK 100 100 Compiler Compiler parallelization possible
LINPACK 1000 1000 Manual Multiprocessor implementations allowed
LINPACK Parallel 1000 Manual Yes
HPLinpack Arbitrary Manual Yes

performance for solving a general dense matrix problem Ax = b in 64-bit floating-point arithmetic at
three levels of problem size and optimization opportunity: 100×100 problem (inner loop optimization),
1000 × 1000 problem (three loop optimization—the whole program) and a scalable parallel problem.
The names and rules for running the LINPACK suite of benchmarks is given in Table I.

2. THE LINPACK PACKAGE AND ORIGINAL LINPACK BENCHMARK

The LINPACK package is a collection of Fortran subroutines for solving various systems of linear
equations. The software in LINPACK is based on a decompositional approach to numerical linear
algebra. The general idea is the following. Given a problem involving a matrix, A, one factors or
decomposes A into a product of simple, well-structured matrices which can be easily manipulated to
solve the original problem. The package has the capability of handling many different matrix and data
types and provides a range of options.

The LINPACK package was based on another package, called the Level 1 Basic Linear Algebra
Subroutines (BLAS) [3]. Most of the floating-point work within the LINPACK algorithms is carried
out by BLAS, which makes it possible to take advantage of special computer hardware without having
to modify the underlying algorithm.

In the LINPACK Benchmark, a matrix of size 100 was originally used because of memory limitations
with the computers that were in use in 1979. Such a matrix has 10 000 floating-point elements and could
have been accommodated in most environments of that time. At the time it represented a large enough
problem.

The algorithm used in the timings is based on LU decomposition with partial pivoting. The matrix
type is real, general and dense, with matrix elements randomly distributed between −1 and 1.
The random number generator used in the benchmark is not sophisticated; rather its major attribute
is its compactness.

Solving a system of equations requires O(n3) floating-point operations, more specifically, 2/3n3 +
2n2 + O(n) floating-point additions and multiplications. Thus, the time (timen) required to solve
such problems on a given machine can be approximated with the LINPACK number (time100) by

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 805

Table II. Double precision operation counts for
LINPACK 100’s DGEFA routine.

Operation type Operation counts

Addition 328 350
Multiplication 333 300
Reciprocal 99
Absolute value 5364
Comparison 4950
Comparison with zero 5247

the following extrapolation formula:

timen = time100 · n3

1003

Operation counts for the most computationally intensive routine of the benchmark are given in Table II.
The table shows that even for a small matrix (of order 100), multiplications and additions dominate
the total operation count. The extrapolation formula is also useful because, on most modern CPUs,
floating-point multiplications and additions take (almost) the same number of cycles.

3. PERFORMANCE CHARACTERIZATION AND IMPROVEMENT

3.1. Concepts

The performance of a computer is a complicated issue, a function of many interrelated quantities.
These quantities include the application, the algorithm, the size of the problem, the high-level language,
the implementation, the human level of effort used to optimize the program, the compiler’s ability
to optimize, the age of the compiler, the operating system, the architecture of the computer and
the hardware characteristics. The results presented for benchmark suites should not be extolled as
measures of total system performance (unless enough analysis has been performed to indicate a reliable
correlation of the benchmarks to the workload of interest) but, rather, as reference points for further
evaluations.

From this point onwards, by performance we mean the number of millions of floating point
operations per second often measured in terms of megaflops (Mflop s−1). In the context of the
LINPACK benchmark, gigaflops (Gflop s−1) are also used as the number of billions of floating point
operations per second. It is customary to include both additions and multiplications in the count of
Mflop s−1, and the operands are assumed to be 64-bit floating-point values.

The manufacturer usually refers to peak performance when describing a system. This peak
performance is arrived at by counting the number of floating-point additions and multiplications that
can be completed in a period of time, usually the cycle time of the machine. For example, an Intel

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



806 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

Table III. Theoretical peak and LINPACK 100 performance numbers of various CPUs.

Cycle Peak LINPACK 100 System
time Performance Performance efficiency

Machine (MHz) (Mflop s−1) (Mflop s−1) (%)

Intel Pentium III 750 750 138 18.4
Intel Pentium 4 2530 5060 1190 23.5
Intel Itanium 800 3200 600 18.5
AMD Athlon 1200 2400 557 23.3
Compaq Alpha 500 1000 440 44.0
IBM RS/6000 450 1800 503 27.9
NEC SX-5 250 8000 856 10.7
Cray SV-1 300 1200 549 45.7

Pentium III with a cycle time of 750 MHz has two floating point units: an adder and multiplier.
During each cycle the results of either the adder or multiplier can be completed, and thus the peak
performance is:

Rpeak = 1 operation

1 cycle
× 750 MHz = 750 Mflop s−1

Table III shows the peak performance for a number of high-performance computers. We treat the
peak theoretical performance as a limit that is guaranteed by the manufacturer not to be exceeded
by programs—a sort of speed of light for a given computer. The LINPACK Benchmark illustrates
this point quite well. In practice, as Table III shows, there may be a significant difference between
peak theoretical and actual performance [4]. We are not claiming that Table III reflects the overall
performance of a given system. On the contrary, we believe that no single number ever can. It does,
however, reflect the performance of a dedicated machine for solving a dense system of linear equations.
Since the dense matrix problem is very regular, the performance achieved is quite high, possibly still
too high for some common applications to achieve and to be characterized by. However, LINPACK
numbers give a good correction of peak performance.

In the following sections, we focus on performance-improving techniques which are relevant to the
LINPACK benchmark: loop unrolling and data reuse.

3.2. Loop unrolling

It is a frequently-observed fact that the bulk of the central processor time for a program is localized
in 3% or less of the source code [5]. Often the critical code (from a timing perspective) consists
of one or more short inner loops typified, for instance, by the scalar product of two vectors.
On scalar computers, simple techniques for optimizing such loops should then be most welcome.
Loop unrolling (a generalization of loop doubling) applied selectively to time-consuming loops is
one such technique [6,7]. When a loop is unrolled, its contents are replicated one or more times, with
appropriate adjustments to array indices and loop increments. Loop unrolling enhances performance,

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 807

because there is the direct reduction in loop overhead (the increment, test and branch function).
For advanced computer architectures (employing segmented or pipe-lined functional units), the greater
density of non-overhead operations permits higher levels of concurrency within a particular segmented
unit (e.g. unrolling could allow more than one multiplication to be concurrently active on a segmented
machine such as the IBM Power processor). Furthermore, unrolling often increases concurrency
between independent functional units on computers so equipped or those with fused multiple-add
instructions (the IBM Power processor, which has independent multiplier and adder units, could
obtain concurrency between addition for one element and multiplication for the following element).
However, on machines with vector instructions, the unrolling technique has the opposite effect.
Compilers would always try to detect vector operations in the loop, but the unrolling inhibits this
and the resulting vector code might become scalar; consequently the performance degrades.

3.3. Vector operations

To observe data reuse patterns we examine the algorithm used in LINPACK and look at how the data
are referenced. We see that, at each step of the factorization process, vector operations are performed
that modify a full submatrix of data. This update causes a block of data to be read, updated and written
back to central memory. The number of floating-point operations is 2/3n3 and the number of data
references, both loads and stores, is 2/3n3. Thus, for every add/multiply pair we must perform a load
and store of the elements, unfortunately obtaining little reuse of data. Even though the operations are
fully vectorized, there is a significant bottleneck in data movement, resulting in poor performance.
On vector computers this translates into two vector operations and three vector-memory references,
usually limiting the performance to well below peak rates. On super-scalar computers this results in
a large amount of data movement and updates. To achieve high-performance rates, this operation-to-
memory-reference rate must be higher.

In some sense, this is the problem with doing simple vector operations on a vector or super-scalar
machine. The bottleneck is in moving data and the rate of execution is limited by this quantity.
We can see this by examining the rate of data transfers and the peak performance. Level 1 BLAS only
operates on vectors. The implemented algorithms tend to do more data movement than is necessary.
As a result, the performance of the routines in LINPACK suffers on high-performance computers
where data movement is as costly as floating-point operations. Today’s computer architectures usually
have multiple stages in the memory hierarchy as shown in Figure 1. One can gain high performance
by restructuring algorithms to exploit this hierarchical organization. To come close to gaining peak
performance, one must optimize the use of the lowest level of memory (i.e. retain information as long
as possible before the next access to lower level of memory hierarchy), obtaining as much reuse as
possible.

3.4. Matrix–vector operations

One approach to restructuring algorithms to exploit hierarchical memory involves expressing the
algorithms in terms of matrix–vector operations. These operations have the benefit that they can reuse
data and achieve a higher rate of execution than the vector counterpart. In fact, the number of floating-
point operations remains the same; only the data reference pattern is changed. This change results
in a operation-to-memory-reference rate on vector computers of effectively two vector floating-point

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



808 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

CPU Fastest and most expensive
Registers

Level 1 Cache
Level 2 Cache
Level 3 Cache
Local Memory

Shared Memory
Distributed Memory

Fast Secondary Storage
Slow Secondary Storage Slowest and least expensive

Figure 1. Computer storage hierarchy.

operations and one vector-memory reference. Level 2 BLAS [8] was proposed in order to support the
development of software that would be both portable and efficient across a wide range of machine
architectures, with emphasis on vector-processing machines. Many of the frequently used algorithms
of numerical linear algebra can be coded so that the bulk of the computation is performed by calls to
Level 2 BLAS routines; efficiency can then be obtained by utilizing tailored implementations of the
Level 2 BLAS routines. On vector-processing machines, one of the aims of such implementations is to
keep the vector lengths as long as possible and in most algorithms the results are computed one vector
(row or column) at a time. In addition, on vector-register machines performance is increased by reusing
the results of a vector register and not storing the vector back into memory.

Unfortunately, this approach to software construction is often not well suited to computers with
a hierarchy of memory and true parallel-processing computers. For those architectures, it is often
preferable to partition the matrix or matrices into blocks and to perform the computation by matrix–
matrix operations on the blocks [8–10]. By organizing the computation in this fashion we provide for
full reuse of data while the block is held in the cache or local memory. This approach avoids excessive
movement of data to and from memory and gives a surface-to-volume effect for the ratio of operations
to data movement. In addition, on architectures that provide for parallel processing, parallelism can be
exploited in two ways:

1. operations on distinct blocks may be performed in parallel; and
2. within the operations on each block, scalar or vector operations may be performed in parallel.

3.5. Matrix–matrix operations

To accommodate the portability of matrix–matrix operations, a set of Level 3 BLAS routines have
been developed, targeted at the matrix–matrix operations [12]. If the vectors and matrices involved
are of order n, then the original BLAS (Level 1) includes operations that are of order O(n), the
extended or Level 2 BLAS provides operations of order O(n2), and the latest BLAS provides

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 809

operations of order O(n3) (hence the use of the term Level 3 BLAS). There is a long history of
block algorithms: early algorithms utilized a small main memory, with tape or disk as secondary
storage [12–17]. More recently, several researchers have demonstrated the effectiveness of block
algorithms on a variety of modern computer architectures with vector-processing or parallel-processing
capabilities [9,10,13,17–22]. Additionally, full blocks (and hence the multiplication of full matrices)
might appear as a subproblem when handling large sparse systems of equations [14,23–25]. Finally, it
has been shown that matrix–matrix operations can be exploited further. LU factorization (the method
of choice for the LINPACK Benchmark code) can be formulated recursively [28]. The recursive
formulation achieves better performance [29] than a block algorithm [30]. This is due to the lower
memory traffic of the recursive method, which is achieved through better utilization of Level 3 BLAS.
The result carries on to the case of out-of-core computations [31]. Interestingly, the recursive algorithm
cannot be implemented in standard Fortran 77 (due to the lack of recursive functions and subroutines),
unless explicit code for handling the frame stack is provided [28] or an explicit calculation of the update
sequence is performed. In Fortran 90, on the other hand, implementation requires careful consideration
of the runtime data copying process, which may significantly decrease the performance. A much more
elegant implementation may be easily achieved in C.

4. LINPACK BENCHMARK SUITE EVOLUTION

Over recent years, the LINPACK Benchmark has evolved from a simple listing for one matrix problem
to an expanded benchmark describing the performance at three levels of problem size on several
hundred computers. The benchmark today is used by scientists worldwide to evaluate computer
performance, particularly for innovative advanced-architecture machines.

As mentioned earlier, performance is a complex issue. To accommodate its evaluation, the
LINPACK Benchmark suite provides three separate benchmarks that can be used to evaluate computer
performance on a dense system of linear equations: the first for a 100 × 100 matrix, the second for a
1000 × 1000 matrix. The third benchmark, in particular, is dependent on the algorithm chosen by the
manufacturer and the amount of memory available on the computer being benchmarked. For details
refer to Table I.

In the case of LINPACK 100, the problem size was relatively small and no changes were allowed to
the LINPACK software. Moreover, no explicit attempt was made to use special hardware features or to
exploit the vector capabilities or multiple processors. The compilers on some machines may, of course,
generate optimized code that itself accesses special features. Thus, as described before, many high-
performance machines may not have reached their asymptotic execution rates. However, the benchmark
is still important because it approximates the performance rates of numerically intensive codes written
by the user and optimized by an optimizing compiler quite well.

The fact that a vendor-supplied code could achieve much higher performance rates than any
compiler-optimized code is reflected in the LINPACK Benchmark suite by LINPACK 1000. To begin
with, the problem size is larger (matrix of order 1000). In addition, modifying (or even replacing) the
algorithm and software is permitted to achieve as high an execution rate as possible. Thus, the hardware
has more opportunity for reaching so called near-asymptotic rates. Figure 2 illustrates the concept
of the asymptotic rate: BLAS routines exhibit higher performance rates as the matrix size increases
and algorithm set-up overhead becomes negligible. However, at a certain point the performance rate

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



810 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

DGEMM

LU factorization using DGEMM

DGEMV

DAXPY

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

Vector/Matrix Dimension

Mflop/s

Figure 2. Asymptotic performance rate of BLAS routines DAXPY (Level 1), DGEMV (Level 2) and DGEMM
(Level 3) and LU factorization based on BLAS Level 3 on an AMD Athlon 1200 Mhz processor (BLAS-routine

implementation comes from ATLAS 3.2.1 [32,33]).

ceases to get larger as the system reaches its optimal behavior for a given routine. Other linear algebra,
including LINPACK’s LU factorization, shown for comparison in Figure 2, have their asymptotic rates
as well.

To guard against excessive optimization encroaching upon the correctness of the solution, constraints
are imposed on the set-up of the matrix and the numerical properties of the solution. This is achieved
by requiring the use of the driver code from LINPACK 100 which generates random matrix entries,
calls the routines to solve the problem (these may be replaced by the user), verifies that the answer is
correct and computes the total number of operations (independently of the method) as 2n3/3 + 2n2

(where n = 1000). The answer is correct if it has the same relative accuracy as standard techniques,
such as Gaussian elimination used in the LINPACK package. By relative accuracy we mean that the
scaled residual is a slowly growing function of matrix dimension n. For completeness, we only mention
that this is achieved through the following standard result which holds regardless of the conditioning
of A: ‖Ax − b‖

‖A‖ · ‖x‖ · n · ε = O(1)

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 811

where A ∈ R
n×n, x, b ∈ R

n, ε is the machine precision for 64-bit floating point arithmetic

ε = max
x>0

float(1 + x) = 1

(float(x) is machine representation of x) and ‖ · ‖ is any consistent matrix and vector norm.
With the arrival of parallel computers yet another requirement of the LINPACK benchmark had to be

reconsidered. The so-called HPLinpack Benchmark allows for matrix dimension n to be made as large
as necessary so that asymptotic performance can be achieved. The following quantities are reported for
each system:

• Rmax, the performance in Gflop s−1 for the largest problem run on a machine;
• Nmax, the size of the largest problem run on a machine;
• N1/2, the size where half the Rmax execution rate is achieved;
• Rpeak, the theoretical peak performance Gflop s−1 for the machine.

To summarize, the rules for HPLinpack are: solve systems of equations by some method allowing the
problem size n to vary and measure the execution time for each problem size. In computing the floating-
point execution rate, use 2n3/3 + 2n2 operations independent of the actual method used (if Gaussian
elimination is chosen then partial pivoting must be used), compute and report a residual for the accuracy
of solution as ‖Ax − b‖/(‖A‖‖x‖).

5. THE TOP500 LIST

Statistics on high-performance computers are of major interest to manufacturers and potential users.
They wish to know not only the number of systems installed, but also the location of the various
supercomputers within the high-performance computing community and the applications for which a
computer system is being used. Such statistics can facilitate the establishment of collaborations, the
exchange of data and software and provide a better understanding of the high-performance computer
market.

Statistical lists of supercomputers are not new. Every year since 1986, Hans Meuer [34] has
published system counts of the major vector computer manufacturers, based principally on those at the
Mannheim Supercomputer Seminar. However, statistics based merely on the name of the manufacturer
are no longer useful. New statistics are required that reflect the diversification of supercomputers, the
enormous performance difference between low-end and high-end models, the increasing availability
of massively parallel processing (MPP) systems and the strong increase in computing power of the
high-end models of workstations such as symmetric multiprocessors (SMP).

To provide this new statistical foundation, the TOP500 list was created in 1993 to assemble and
maintain a list of the 500 most powerful computer systems. Its first edition was partially based on
statistical lists published by other parties for different purposes [35,36], while today it relies on
submissions from computer system users and vendors. The list is compiled twice a year with the
help of high-performance computer experts, computational scientists, manufacturers and the Internet
community in general.

It is true that, in the list, computers are ranked by their performance on the HPLinpack Benchmark.
However, in an attempt to obtain uniformity across all computers in performance reporting, the

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



812 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

algorithm used in solving the system of linear equations in the benchmark routine must conform to the
standard operation count for LU factorization with partial pivoting. In particular, the operation count
for the algorithm must be 2/3n3 + O(n2) floating point operations. This excludes the use of a fast
matrix multiply algorithm like Strassen’s [35–38] or Coppersmith and Winograd’s [41] methods for
matrix multiplication. Even though there is no specific requirement for the method used for measuring
performance, there exists a reference implementation of the benchmark called HPL [42]. While only
meant as a guideline, it is being widely used to provide data for the TOP500 list, since it uses external
routines for matrix–matrix operations which are supplied by the vendor and are very well tuned for a
given computer system. A detailed description of HPL is provided in the following section. As closing
remarks, we would like to mention other software packages and technologies that can be used for
TOP500 submission. They include: HPF [43,44], PESSL [45], PLAPACK [46], ScaLAPACK [47] or
even LAPACK [30] combined with either OMP [48] or pthreads [49].

6. HPL

This section gives a rather detailed description of the HPL code. However, to limit the size of this
exposition, a substantial amount of technical information is omitted for which the reader is referred to
the supplied references.

6.1. Overview

HPL is a portable implementation of the HPLinpack Benchmark written in C. At the same time, it
can be regarded as a software package that generates, solves, checks and times the solution process of
a random dense linear system of equations on distributed-memory computers. The package uses 64-
bit floating-point arithmetic and portable routines for linear algebra operations and message passing.
The former ones can either be BLAS or Vector Signal Image Processing Library (VSIPL) [50] while
the latter are from MPI [51,52]. The true advantage of HPL is the fact that it allows the selection of
multiple factorization algorithms. Figure 3 shows an outline of HPL’s driver code, which is modeled
after the original LINPACK 100 benchmark code.

6.2. Algorithm

HPL generates and solves a linear system of equations of order n:

Ax = b; A ∈ R
n×n; x, b ∈ R

n

by first computing LU factorization with row partial pivoting of the n by n+1 coefficient matrix [A, b]:
Pr[A, b] = [[LU ], y], Pr, L,U ∈ R

n×n, y ∈ R
n

Since the row pivoting (represented by the permutation matrix Pr) and the lower triangular factor L are
applied to b as the factorization progresses, the solution x is obtained in one step by solving the upper
triangular system

Ux = y

The lower triangular matrix L is left unpivoted and the array of pivots is not returned.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 813

/* Generate and partition matrix data among MPI computing nodes. */
/* ... */

MPI_Barrier(...); /* All the nodes start at the same time. */

HPL_ptimer(...); /* Start wall-clock timer. */

HPL_pdgesv(...); /* Solve system of equations. */

HPL_ptimer(...); /* Stop wall-clock timer. */

MPI_Reduce(...); /* Obtain the maximum wall-clock time. */

/* Gather statistics about performance rate (base on the maximum wall-clock time)
and accuracy of the solution. */

/* ... */

Figure 3. Main computational steps performed by HPL to obtain the HPLinpack Benchmark rating.

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

Figure 4. Ownership of dense subblocks in the two-dimensional block-cyclic data distribution used by HPL.
The number of processors is four (named P0, P1, P2 and P3), they are organized in a 2 × 2 grid (P = Q = 2).

The number of subblocks is four in both dimensions (n/nB = 4).

Figure 4 shows the two-dimensional block-cyclic data distribution used by HPL. The data is
distributed onto a two-dimensional grid (of dimensions P × Q) of processes according to the block-
cyclic scheme to ensure good load balance as well as the scalability of the algorithm. The n × (n + 1)

coefficient matrix is logically partitioned into blocks (each of dimension nB ×nB; where nB is referred
to as blocking factor), that are cyclically dealt onto the P × Q process grid. This is done in both
dimensions of the matrix.

The right-looking variant [9] has been chosen for the main loop of the LU factorization.
This computation is logically partitioned with the same block size nB that was used for the data
distribution. This means that, at each iteration of the loop, a panel of nB columns is factored and
the trailing submatrix is updated.

At a given iteration of the main loop and because of the Cartesian property of the distribution scheme,
each panel factorization occurs in one column of processes. This particular part of the computation
lies on the critical path of the overall algorithm. For this operation, the user is offered a choice of

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



814 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

three (Crout, left- and right-looking) recursive variants based on matrix–matrix multiply. The software
also allows the user to choose how many sub-panels the current panel should be divided into at each
recursion level. Furthermore, one can also select at run-time the recursion stopping criterion in terms of
the number of columns left to factor. When this threshold is reached, the sub-panel will then be factored
using one of the three (Crout, left- or right-looking) factorization algorithms based on matrix–vector
operations. Finally, for each panel’s column, the pivot search and the associated swap and broadcast
operations of the pivot row are combined into one single communication step. A binary-exchange
(leave-on-all) reduction performs these three operations at once, which reduces the number of message
exchanges but requires the high-performance network to perform well.

Once the panel factorization has been performed, the factored panel of columns is broadcast to the
other process columns. There are many possible broadcast algorithms and the software currently offers
the following variants:

• increasing ring;
• modified increasing ring;
• increasing two-ring;
• modified increasing two-ring;
• bandwidth-reducing;
• modified bandwidth-reducing.

The modified variants relieve the next processor (the one that would participate in factorization of
the panel after the current one) from the burden of sending messages (otherwise it has to receive as
well as send matrix update data). The ring variants propagate the update data in a single pipeline
fashion, whereas the two-ring variants propagate data in two pipelines concurrently. The bandwidth-
reducing variants [36, 51–54] divide the message to be sent into a number of pieces and scatter it across
a single row of the grid of processors, so that more messages are exchanged but the total volume of
communication is independent of the number of processors. This becomes particularly important when
the computing nodes are much faster relative to the interconnect.

Once the current panel has been broadcast (or during the broadcast operation) the trailing submatrix
has to be updated. As mentioned before, the panel factorization lies on the critical path. This means
that when the kth panel has been factored and then broadcast, the next most urgent task to complete
is factorization and broadcast of panel k + 1. This technique is often referred to as a look-ahead
(or send-ahead) in the literature. HPL allows the selection of various depths of look-ahead.
By convention, a depth of zero corresponds to having no look-ahead, in which case the trailing
submatrix is updated by the panel currently broadcast. Look-ahead consumes some extra memory
to keep all the panels of columns currently in the look-ahead pipe. Our experimental results show that
a look-ahead of depth one or two is most likely to achieve the best performance gain.

The update of the trailing submatrix by the last panel in the look-ahead pipe is performed in three
phases. First, the pivots must be applied to form the current row panel of U . Second, upper triangular
solve using the column panel occurs. Finally, the updated part of U needs to be broadcast to each
process within a single column so that the local rank update of size nB can take place. It has been
decided to combine the swapping and broadcast of U at the cost of replicating the solve. HPL provides
two algorithms for this communication operation: one is based on the binary-exchange algorithm and
the second on bandwidth-reducing techniques. The former variant is a modified leave-on-all reduction
operation. The latter has communication volume complexity that solely depends on the size of U

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 815

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
flo

p/
s

Matrix dimension

Myrinet GM
Gigabit (IP)
Myrinet (IP)

Fast Ethernet (IP)

Figure 5. Comparison of HPL performance with three different interconnects, gigabit Ethernet,
Myrinet and Fast Ethernet, on top of IP and Myrinet’s native layer GM. The process grid

consist of 4 × 4 Pentium III 550 MHz CPUs.

(the number of process rows only impacts the number of messages being exchanged) and, consequently,
should outperform the previous variant for large problems on large machine configurations. In addition,
both of the previous variants may be combined in a single run of the code.

After the factorization has ended, the backward substitution remains to be done. HPL uses look-
ahead of depth one to do this. The right-hand side is forwarded in process rows in a decreasing-ring
fashion, so that we solve QnB entries at a time. At each step, this shrinking piece of the right-hand side
is updated. The process just above the one owning the current diagonal block of the matrix updates
its last nB entries of vector x, forwards it to the previous process column and then broadcasts it in
the process column in a decreasing-ring fashion. The solution is then updated and sent to the previous
process column. The solution of the linear system is left replicated in every process row.

To verify the result, the input matrix and right-hand side are regenerated. The following scaled
residuals are computed (ε is the relative machine precision):

rn = ‖Ax − b‖∞
‖A‖1nε

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



816 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

Table IV. Description of the Compaq cluster used in tests.

CPU EV67 667 MHz
OS True64 ver. 5
C compiler cc ver. 6.1
C flags -arch host -tune host -std -O5
MPI native (linker flags: -lmpi -lelan)
BLAS CXML
Date September 2000

Table V. Performance (in Gflop s−1) of HPL on a Compaq cluster
with 64 computing nodes.

Matrix dimension

Processor grid dimension 5000 10 000 25 000 53 000

8 × 8 26.37 45.00 60.99 67.50

r1 = ‖Ax − b‖∞
‖A‖1‖x‖1ε

r∞ = ‖Ax − b‖∞
‖A‖∞‖x‖∞ε

A solution is considered numerically correct when all of these quantities are of order O(1).

6.3. Performance results

The first set of performance results are shown in Figure 5. As in Figure 2, they reveal the asymptotic
behavior of performance on a cluster of Pentium III 550 MHz processors. In addition, the figure shows
how differences between messaging software (Myrinet GM and TCP/IP stack) and hardware (Myrinet,
Gigabit Ethernet and Fast Ethernet) influence benchmarking results.

Performance tests were also performed on a larger system—a Compaq cluster installed at Oak Ridge
National Laboratory in Tennessee, U.S.A. This cluster is listed at position 90 on the June 2001 TOP500
list. Its description and performance are given in Tables IV and V. The LINPACK Benchmark numbers
for this system are presented in Table VI. All of the results, including the TOP500 submission for this
system, were obtained with HPL. HPL was also used to benchmark the IBM system at Oak Ridge
National Laboratory which is listed at position 8 on the June 2002 TOP500. The system has 864 IBM
Power4 processors. The performance data of this processor is given in Table VII.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 817

Table VI. LINPACK Benchmark numbers for the Compaq
cluster obtained using HPL.

Rmax E

CPUs/nodes N1/2 Nmax (Gflop s−1) (%)

1/1 150 6625 1.14 100
4/1 800 12 350 4.36 95.6

16/4 2300 26 500 17.0 93.2
64/16 5700 53 000 67.5 92.5

256/64 14 000 106 000 263.6 90.1

Table VII. Hardware and performance characteristics of two families of processors from two different vendors.

Intel IBM

Operation Pentium III Pentium III P4 P4 Power3 Power4

Clock (MHz) 550 933 1700 2530 375 1300
L1 cache (I+D) (KB) 16+16 16+16 12+8 12+8 32+64 32+64
System bus (MHz) 100 133 400 533 100 333
Peak performance (Mflop s−1) 550 933 3400 5060 1500 5200
DGEMM performance (%) 73 71 64 69 86 67
LINPACK 1000 (%) 59 57 41 46 80 55
HPLinpack (%) 58 56 N/A N/A 58 51

7. THE FUTURE OF THE BENCHMARK

Rather than embarking in risky fortune-telling, we will describe recent trends in high-performance
computing which, we believe, will shape the near future of the LINPACK Benchmark suite.

One such trend is the ongoing improvement of CPU hardware which results in making Moore’s
law [57] reality. However, it is interesting to observe how the peak performance race (marketed to the
public in the form of ever increasing clock rates) leaves behind much more practical metrics such as
LINPACK numbers. Table VII shows evolution of characteristics of the key hardware components and
performance numbers of two widely used families of superscalar processors. The performance numbers
were given as percentages of the peak to show the decreasing trend of achievable computing power.
Partially, it can be attributed to an insufficient amount of level 1 cache, which cannot provide enough
buffering for the increased clock rates of the CPU and the system bus. Also, the tuning of vendor
libraries lags behind the hardware development. The latter can be alleviated by self-tuning libraries
such as ATLAS [32,33] and so we are most likely to see proliferation of such ‘intelligent software’
which encapsulates years of experience of experts and automates the deployment efforts of existing
software to new hardware.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



818 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

ACKNOWLEDGEMENTS

The authors acknowledge the use of the Oak Ridge National Laboratory Compaq cluster, funded by the Department
of Energy’s Office of Science and Energy Efficiency programs and the IBM supercomputer based on the
Power4 microprocessor provided as a part of the Department of Energy’s Scientific Discovery through Advanced
Computing (SCiDAC) program.

This work was sponsored in part by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the University of
Tennessee.

REFERENCES

1. The LINPACK 1000x1000 benchmark program. (See http://www.netlib.org/benchmark/1000d for source code.).
2. Dongarra JJ, Bunch J, Moler C, Stewart GW. LINPACK User’s Guide. SIAM: Philadelphia, PA, 1979.
3. Lawson C, Hanson R, Kincaid D, Krogh F. Basic Linear Algebra Subprograms for Fortran usage. ACM Transactions on

Mathematical Software 1979; 5:308–323.
4. Dongarra JJ. Performance of various computers using standard linear equations software. Technical Report CS-89-85,

University of Tennessee, 2002.
(An updated version of this report can be found at http://www.netlib.org/benchmark/performance.ps).

5. Pager D. Some notes on speeding up certain loops by software, firmware, and hardware means. IEEE Transactions on
Computers 1972; 97–100.

6. Dongarra JJ, Hinds A. Unrolling loops in Fortran. Software—Practice and Experience 1979; 9:219–226.
7. Knuth D. An empirical study of Fortran programs. Software—Practice and Experience 1971; 1:105–133.
8. Dongarra JJ, Du Croz J, Hammarling S, Hanson R. An extended set of FORTRAN Basic Linear Algebra Subprograms.

ACM Transactions on Mathematical Software 1988; 14:1–17.
9. Dongarra JJ, Duff IS, Sorensen DC, van der Vorst HA. Numerical Linear Algebra for High-Performance Computers. SIAM:

Philadelphia, PA, 1998.
10. Dongarra JJ, Hewitt T. Implementing dense linear algebra algorithms using mutlitasking on CRAY X-MP-4. SIAM Journal

of Science and Statistics in Computing 1986; 7(1):347–350.
11. Dongarra JJ, Sorensen DC. Linear algebra on high-performance computers. Proceedings Parallel Computing 85,

Schendel U (ed.). North Holland, 1986; 3–32.
12. Dongarra JJ, Du Croz J, Duff IS, Hammarling S. A set of Level 3 FORTRAN Basic Linear Algebra Subprograms. ACM

Transactions on Mathematical Software 1990; 16:1–17.
13. Barron DW, Swinnerton-Dyer HPF. Solution of simultaneous linear equations using a magnetic tape store. Computer J.

1990; 3:28–33.
14. Calahan DA. Block-oriented local-memory-based linear equation solution on the CRAY-2: Uniprocessor algorithms.

Proceedings International Conference on Parallel Processing, August 1986, Schendel U (ed). IEEE Computer Society
Press, 1986; 375–378.

15. Chartres B. Adaption of the Jacobi and Givens methods for a computer with magnetic tape backup store. Technical Report 8,
University of Sydney, 1960.

16. Dave AK, Duff IS. Sparse matrix calculations on the CRAY-2. Technical Report CSS 197, AERE Harwell, 1986.
17. DuCroz J, Nugent S, Reid J, Taylor D. Solving large full sets of linear equations in a paged virtual store. ACM Transactions

on Mathematical Software 1981; 7(4):527–536.
18. McKellar AC, Coffman EG Jr. Organizing matrices and matrix operations for paged memory systems. Communications of

the ACM 1969; 12(3):153–165.
19. Berry M, Gallivan K, Harrod W, Jalby W, Lo S, Meier U, Philippe B, Sameh A. Parallel algorithms on CEDAR system.

Technical Report Report No. 581, CSRD, 1986.
20. Bischof C, Van Loan CF. The WY representation for products of Householder matrices. SIAM SISSC 1987; 8(2).
21. Bucher I, Jordan T. Linear algebra programs for use on a vector computer with a secondary solid state storage device.

Advances in Computer Methods for Practical Differential Equations, Vichnevetsky R, Stepleman R (eds). IMACS, 1984;
546–550.

22. IBM. Engineering and Scientific Subroutine Library. IBM, 1986. Program Number: 5668-863.
23. Robert Y, Suguazerro P. The LU decomposition algorithm and its efficient Fortran implementation on the IBM 3090 vector

multiprocessor. Technical Report ECSEC Report ICE-0006, IBM, March 1987.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



THE LINPACK BENCHMARK: PAST, PRESENT AND FUTURE 819

24. Schreiber R. Engineering and Scientific Subroutine Library. Module Design Specification. SAXPY Computer Corporation,
255 San Geronimo Way, Sunnyvale, CA 94086, 1986.

25. Dongarra JJ, Eijkhout V, Luszczek P. Recursive approach in sparse matrix LU factorization. Scientific Programming 2001;
9(1):51–60.

26. Duff IS. Full matrix techniques in sparse Gaussian elimination. Numerical Analysis Proceedings, Dundee, 1981 (Lecture
Notes in Mathematics, vol. 912). Springer: Berlin, 1981; 71–84.

27. George A, Rashwan H. Auxiliary storage methods for solving finite element systems. SIAM SISSC 1985; 6:882–910.
28. Gustavson FG. Recursion leads to automatic variable blocking for dense linear-algebra algorithms. IBM Journal of

Research and Development 1997; 41(6):737–755.
29. Toledo S. Locality of reference in LU decomposition with partial pivoting. SIAM Journal on Matrix Analysis and

Applications 1997; 18(4).
30. Anderson E, Bai Z, Bischof C, Blackford SL, Demmel JW, Dongarra JJ, Du Croz J, Greenbaum A, Hammarling S,

McKenney A, Sorensen DC. LAPACK User’s Guide (3rd edn). Society for Industrial and Applied Mathematics:
Philadelphia, PA, 1999.

31. Toledo S, Gustavson FG. The design and implementation of SOLAR, a portable library of rscalable out-of-core linear
algebra computations. Proceedings of the 4th Annual Workshop on I/O in Parallel and Distributed Systems, May 1996.
ACM Press, 1996; 28–40.

32. Dongarra JJ, Petitet A, Whaley RC. Automated empirical optimization of software and the ATLAS project. Parallel
Computing 2001; 27(1-2):3–25.

33. Dongarra JJ, Whaley RC. Automatically tuned linear algebra software (ATLAS). Proceedings SC’89 Conference. IEEE,
1998.

34. Meuer HW, Strohmaier E, Dongarra JJ, Simon HD. Top500 Supercomputer Sites, 17th edition, November 2 2001. (The
report can be downloaded from http://www.netlib.org/benchmark/top500.html).

35. Ahrendt G. Weekly postings to comp.sys.super [1993].
36. Kahaner D. Kahaner report on supercomputer in Japan. Technical Report, The Computer Science Department, University

of Arizona, 1992. ftp://ftp.cs.arizona.edu/japan/kahaner.reports/jsuper.92.
37. Bailey D, Lee K, Simon H. Using Strassen’s algorithm to accelerate the solution of linear systems. Journal of

Supercomputing 1990; 4:357–371.
38. Grayson B, van de Geijn R. A high performance parallel Strassen implementation. Parallel Processing Letters 1996;

6(1):3–12.
39. Paprzycki M, Cyphers C. Using Strassen’s matrix multiplication in high performance solution of linear systems. Computers

and Mathematics with Applications 1996; 31(4/5):55–61.
40. Strassen V. Gaussian elimination is not optimal. Numerical Mathematics 1969; 13:354–356.
41. Coppersmith D, Winograd S. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 1990;

9:251–280.
42. Petitet A, Whaley RC, Dongarra JJ, Cleary A. HPL—A Portable Implementation of the High-Performance Linpack

Benchmark for Distributed-Memory Computers. Innovative Computing Laboratory, September 2000. Available at
http://icl.cs.utk.edu/hpl/ and http://www.netlib.org/benchmark/hpl/.

43. High Performance Fortran Forum. High Performance Fortran Language specification. version 1.1. Technical Report, Rice
University, November 1994.

44. High Performance Fortran Forum. High Performance Fortran Language specification. version 2.0. Technical Report, Rice
University, January 1997.

45. IBM. Parallel Engineering and Scientific Subroutine Library for AIX Version 2 Release 3. IBM, 2001.
46. van de Geijn RA. Using PLAPACK. The MIT Press, 1997.
47. Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel JW, Dhillon IS, Dongarra JJ, Hammarling S, Henry G,

Petitet A, Stanley K, Walker DW, Whaley RC. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics:
Philadelphia, PA, 1997.

48. Openmp: Simple, portable, scalable smp programming. http://www.openmp.org/.
49. International Organization for Standardization. Information technology—Portable operating system interface (POSIX)—

Part 1: System Application Programming Interface (API) [C language]. ISO/IEC 9945-1:1996, Geneva, Switzerland,
1996.

50. Shwartz DA, Judd RR, Harrod WJ, Manley DP. VSIPL 1.02 API. http://www.vsipl.org/ [26 February 2002].
51. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (version 1.1). http://www.mpi-forum.org/

[1995].
52. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. http://www.mpi-forum.org/

[July 1997].
53. Chtchelkanova A, Gunnels J, Morrow G, Overfelt J, van de Geijn R. Parallel implementation of BLAS: General techniques

for Level 3 BLAS. Concurrency: Practice and Experience 1997; 9(9):837–857.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820



820 J. J. DONGARRA, P. LUSZCZEK AND A. PETITET

54. Dongarra JJ, van de Geijn R, Walker DW. Scalability issues in the design of a library for dense linear algebra. Journal of
Parallel and Distributed Computing 1994; 22(3):523–537. (Also LAPACK Working Note No. 43).

55. van de Geijn R. Massively parallel LINPACK Benchmark on the Intel Touchstone DELTA and iPSC/860 systems. 1991
Annual Users Conference Proceedings, Dallas, Texas. Intel Supercomputer Users Group, 1991.

56. van de Geijn R, Watts J. SUMMA: Scalable universal matrix multiplication algorithm. Concurrency: Practice and
Experience 1997; 9(4):255–274.

57. Moore GE. Cramming more components onto integrated circuits. Electronics 1965; 38(8).

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:803–820


	1 INTRODUCTION
	2 THE LINPACK PACKAGE AND ORIGINAL LINPACK BENCHMARK
	3 PERFORMANCE CHARACTERIZATION AND IMPROVEMENT
	3.1 Concepts
	3.2 Loop unrolling
	3.3 Vector operations
	3.4 Matrix--vector operations
	3.5 Matrix--matrix operations

	4 LINPACK BENCHMARK SUITE EVOLUTION
	5 THE TOP500 LIST
	6 HPL
	6.1 Overview
	6.2 Algorithm
	6.3 Performance results

	7 THE FUTURE OF THE BENCHMARK

