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Abstract—In the single-source shortest path (SSSP) problem,
we have to find the shortest paths from a source vertex v to all
other vertices in a graph. In this paper, we introduce a novel
parallel algorithm, derived from the Bellman-Ford and Delta-
stepping algorithms. We employ various pruning techniques, such
as edge classification and direction-optimization, to dramatically
reduce inter-node communication traffic, and we propose load
balancing strategies to handle higher-degree vertices. The ex-
tensive performance analysis shows that our algorithms work
well on scale-free and real-world graphs. In the largest tested
configuration, an R-MAT graph with 238 vertices and 242 edges
on 32, 768 Blue Gene/Q nodes, we have achieved a processing
rate of three Trillion Edges Per Second (TTEPS), a four orders
of magnitude improvement over the best published results.

I. INTRODUCTION

The past decade has seen an exponential increase of data
produced by online social networks, blogs, and micro-blogging
tools. Many of these data sources are best modeled as graphs
that can be analyzed to discover sociological processes and
their temporal evolution through properties of the underlying
edges. A growing number of applications work with web-scale
graphs. For example, the Facebook social network has 800
million vertices with an average vertex degree of 130 edges,1
and major search engines are laying out new infrastructure to
support a web graph of trillions of vertices.

In this paper, we focus on developing scalable algorithms
for the Single Source Shortest Path (SSSP) problem over
large-scale graphs on massively parallel distributed systems.
In addition to applications in combinatorial optimization (such
as VLSI design and transportation), shortest path algorithms
are increasingly relevant in complex network analysis [1], [2].

A. Basic Algorithms.

The proposed SSSP algorithm inherits important design
aspects of three existing algorithms. We present a brief review
of these algorithms in this section and defer a more detailed
discussion on additional related work to Section I-D.

Two classical approaches for the SSSP problem are at-
tributable to Dijkstra [3] and the Bellman-Ford [4], [5]. In
a sequential implementation, Dijkstra’s algorithm is efficient
in terms of processing speed since it runs in time linear in
the number of edges. However, the algorithm requires many
iterations and it is less amenable to parallelization. In contrast,
Bellman-Ford involves fewer iterations and each iteration is
highly parallelizable. However, the algorithm may process each
edge multiple times and is likely to incur high processing time.

1http://www.facebook.com/press/info.php?statistics

Meyer and Sanders [6] proposed the ∆-stepping algo-
rithm, a trade-off between the two extremes of Dijkstra’s and
Bellman-Ford. The algorithm involves a tunable parameter ∆:
setting ∆ = 1 yields a variant of Dijsktra’s algorithm [7],
while setting ∆ = ∞ yields the Bellman-Ford algorithm. By
varying ∆ in the range [1,∞], we get a spectrum of algorithms
with varying degrees of processing time and parallelism.

B. Graph 500 Benchmark

The Graph 500 list2 was introduced in 2010 as an alterna-
tive to the Top500 list to rank computer performance based on
data-intensive computing applications. The current version of
the benchmark includes Breadth First Search (BFS), with SSSP
under evaluation. The benchmark uses Recursive MATrix (R-
MAT) scale-free graphs [8], [9], and the performance of a
Graph 500 implementation is typically measured in terms of
Traversed Edges Per Second (TEPS), computed as m/t, where
m is the number of edges in the input graph and t is the time
taken in seconds. While still in its infancy, Graph 500 captures
many essential features of data intensive applications, and has
raised a lot of interest in the supercomputing community at
large, both from the scientific and operational points of view.
In fact, many supercomputer procurements are now including
the Graph 500 in their collection of benchmarks.

C. Contributions

The paper provides several important contributions. We
describe a new scalable SSSP algorithm for large-scale
distributed-memory systems. The algorithm is obtained by
augmenting the ∆-stepping algorithm with three important
optimizations.
(a) Hybridization: We observe that the number of iterative
steps performed in the ∆-stepping algorithm can be signif-
icantly reduced by running the algorithm only for its initial
phases, then switching to the Bellman-Ford algorithm.
(b) Pruning: We introduce a new model of direction opti-
mization [14], in combination with edge classification, that
relaxes only a fraction of the input edges and avoids redundant
relaxations. In practical settings, the number of relaxations
performed by the algorithm is significantly smaller than that
of Dijkstra’s (which relaxes all the edges). The model involves
two different types of relaxation mechanisms called push
and pull, and we have designed a near-optimal heuristic for
determining the mechanism to be employed in different phases
of the algorithm. The dramatic reduction in the number of
relaxations obtained by the above techniques leads to reduced

2http://www.graph500.org



Reference Problem Graph Type Vertices Edges GTEPS Processors System
Bader, Madduri [10] BFS R-MAT 200 M 1 B 0.5 40 Cray MTA-2
Checconi et al. [11] BFS Graph 500 232 236 254 4,096 nodes/65,536 cores IBM Blue Gene/Q (NNSA SC)
Graph 500 Nov 2013 [12] BFS Graph 500 236 240 1,427 4,096 nodes/65,536 cores IBM Blue Gene/Q (Mira)
Graph 500 Nov 2013 [12] BFS Graph 500 239 243 14,328 32,768 nodes/524,288 cores IBM Blue Gene/Q (Mira)
Graph 500 Nov 2013 [12] BFS Graph 500 240 244 15,363 65,536 nodes/1,048,576 cores IBM Blue Gene/Q (Sequoia)
Madduri et al. [13] SSSP R-MAT 228 230 0.1 40 nodes Cray MTA-2
This paper SSSP R-MAT 235 239 650 4096 nodes/65,536 cores IBM Blue Gene/Q (Mira)
This paper SSSP R-MAT 238 242 3100 32,768 nodes/524,288 cores IBM Blue Gene/Q (Mira)

Fig. 1. Performance comparison

communication volume and processing time.
(c) Load balancing: We observe that in very large graphs,
several billions of vertices and beyond, performance tends to
be affected by load imbalance, especially when processing
vertices with high degree. We alleviate this issue by employing
a two-tiered load balancing strategy. First, the neighborhood of
heavy degree vertices is split across the processing nodes, and
then, within a processing node, the load is evenly distributed
among threads.

We validate the algorithm with an extensive performance
evaluation using R-MAT graphs, and a preliminary study
involving real world graphs (such as Friendster, Orkut and
LiveJournal). In the largest graph configuration, a scale-38
R-MAT graph with 238 vertices and 242 undirected edges
explored on 32, 768 Blue Gene/Q nodes, we have obtained
a processing rate of 3, 000 billion TEPS (GTEPS).

We are not aware of any prior study on the SSSP problem
involving graphs of such scale, system size and processing
rate. Madduri et al. [13] presented an experimental evaluation
of the ∆-stepping algorithm on graphs of size up to 230 edges
on 40 MTA-2 Cray nodes, achieving a performance number
of about 100 million TEPS (MTEPS), approximately four
orders of magnitude smaller than our results.3 To understand
the performance in a better context, we compare our results
against some of the available performance figures for the
closely related Breadth First Search (BFS) problem. We note
that while BFS shares certain common features with SSSP,
BFS is a much simpler problem from a computational point of
view, as discussed in the Related Work section below. Figure 1
shows the performance results available in the literature and
the latest Graph 500 submissions. It is worth noting that
SSSP is only two to five times slower than BFS on the same
machine configuration, graph type and level of optimization.
This is a very promising result that proves that BFS levels
of performance can also be achieved by more complex graph
algorithms.

D. Related Work

Considerable attention has been devoted to solving SSSP in
sequential as well as parallel settings. The classical Dijkstra’s
algorithm [3] is the most popular algorithm in the sequential
world. The algorithm can be implemented in O(n log n+m)
time using Fibonacci heaps [15]. There have been attempts
to develop parallel versions of Dijkstra’s algorithm and its
variants (for example, in Parallel Boost Graph Library [16]).
Efforts have also been made to parallelize the algorithm using

3This an estimated upper bound derived from the experimental evaluation
in [13]

transactional memory and helper threads [17] but with very
modest speedups. Parallel implementations of the Bellman-
Ford algorithm [4], [5] and its variants are also available (for
example, using MapReduce framework [18]). However, these
methods do not provide good scalability.

A body of prior work has dealt with designing parallel
algorithms for SSSP from a theoretical perspective under the
PRAM model. In this model, there are two parameters of
importance in measuring the performance of an algorithm. The
first is the running time, and the second is the work done,
which is determined by the product of the number of proces-
sors and its running time. The best known O(n log n+m) work
solution is obtained by combining the techniques of Paige et
al. [19] with Driscoll et al. [20] – this algorithm has running
time O(n log n). Brodal et al. [21] presented an algorithm with
a running time of O(n) and O((n + m) log n) work. Thorup
[22] presented an O(n+m) time RAM algorithm but this was
restricted to a special case of undirected graphs. Algorithms
with poly-logarithmic running times are inefficient in terms
of work done [23]. The most relevant work in the context of
this paper is due to Meyers and Sanders [6], who presented an
algorithm that does well in the average-case on random graphs.
For random directed graphs with edge probability d/n and
uniformly distributed edge weights, they presented a PRAM
version that runs in expected time O(log3 n/ log log n) using
linear work. The algorithm can also be easily adapted for
distributed memory systems. Madduri et al. showed that this
algorithm scales well on the massively multi-threaded shared
memory Cray system [13].

Breadth First Search (BFS) is a well-studied problem which
is closely related to SSSP. However, a crucial aspect makes
BFS computationally simpler than SSSP. In BFS, a vertex
can be “settled” and added to the BFS tree the first time it
is reached, whereas in SSSP the distance of a vertex may
be revised multiple times. There has been considerable effort
on developing parallel implementations of BFS on massive
graphs on a variety of parallel settings: for example, shared
memory architectures [10], [14], GPUs [24] and massively
parallel distributed memory machines [11]. The best BFS
implementation of the Graph 500 benchmark achieves 15, 363
GTEPS over a graph of size 240 vertices and 244 edges on a
Blue Gene/Q distributed memory system having 65, 536 nodes
and 1, 048, 576 cores.

II. BASIC ALGORITHMS

In the SSSP problem, the input consists of a weighted
undirected graph G = (V,E,w), where the weight function
w assigns an integer weight w(e) > 0 to each edge e ∈ E.
Let the number of vertices be |V | = N and the number of



edges be |E| = m. The input also specifies a vertex rt ∈ V
called the root. The goal is to compute the shortest distance
from rt to every vertex v ∈ V . For a vertex v ∈ V , let d∗(v)
denote the shortest distance. The graph scale scale is defined
as log2N .

Our algorithm for the SSSP problem builds on three well-
known algorithms, which we refer to as the basic algorithms:
Dijkstra’s algorithm, the Bellman-Ford algorithm (see [25])
and the ∆-stepping algorithm [6]. In this section, we will first
introduce these algorithms and then analyze their characteris-
tics. Based on the intuition derived from the above analysis,
we will develop improved algorithms in the following section.

A. Basic Algorithms : Description

All the three algorithms maintain a tentative distance d(v),
for each vertex v ∈ V . At any stage of the algorithm, the
value d(v) is guaranteed to be an upper bound on the actual
shortest distance d∗(v). The tentative distance of the root
vertex is initialized to 0 and for all the other vertices to
∞. As the algorithm proceeds, the tentative distance d(v) is
monotonically decreased. The algorithms guarantee that, at the
end of the process, d(v) matches the actual shortest distance
d∗(v). The tentative distances are modified by an operation
called relaxation of an edge. When we reduce the tentative
distance of a vertex u, we can possibly reduce the tentative
distance of its neighbors as well. Given an edge e = 〈u, v〉,
the operation Relax(u, v) is defined as follows:

d(v)← min{d(v), d(u) + w(〈u, v〉)}.

Furthermore, at any stage of the algorithm, we say that a vertex
v is settled, if the algorithm can guarantee that d(v) = d∗(v).

Dijkstra’s Algorithm. The algorithm begins by declaring all
the vertices to be unsettled and proceeds in multiple iterations.
In each iteration, the unsettled vertex u having the minimum
tentative distance is selected. We call u as the active vertex
of this iteration and declare u to be settled. Then, for each
neighbor v of u given by an edge e = 〈u, v〉, the operation
Relax(u, v) is performed. The algorithm terminates when
there are no more unsettled vertices.

Bellman-Ford Algorithm. Dijkstra’s algorithm selects only
one active vertex in any iteration, whereas the Bellman-
Ford algorithm selects multiple active vertices. The algorithm
proceeds in multiple iterations. In each iteration, we declare a
vertex u to be active, if its tentative distance d(u) changed in
the previous iteration. For each such active vertex u, consider
all its incident edges e = 〈u, v〉 and perform Relax(u, v). The
process terminates when there are no active vertices at the
beginning of an iteration.

∆-Stepping Algorithm. Dijkstra’s and the Bellman-Ford
algorithms employ two contrasting strategies for selecting
active vertices in each iteration. The former chooses only
one vertex (which is guaranteed to be settled), whereas the
latter activates any vertex whose tentative distance was reduced
in the previous iteration. The ∆-stepping algorithm strikes a
balance between these two extremes.

Fix an integer constant ∆ ≥ 1. We partition the vertices
into multiple buckets, based on their tentative distance. For
an integer k ≥ 0, the bucket Bk would consist of vertices v

whose tentative distance falls in the range [k∆, (k+ 1)∆− 1].
The bucket index for a vertex v is given by bd(v)

∆ c. Initially,
the root vertex rt is placed in the bucket B0 and all the other
vertices are placed in the bucket B∞. The algorithm works
in multiple epochs. The goal of epoch k is to settle all the
vertices whose actual shortest distance falls in the range of
bucket k. The epoch works in multiple iterations. In each
iteration, a vertex u is declared to be active if its tentative
distance changed in the previous iteration and the vertex is
found in the bucket Bk (in the first iteration of the epoch,
all vertices found in the bucket are considered active). For
each active vertex u and all its incident edges e = 〈u, v〉, we
perform Relax(u, v). When the bucket does not contain any
active vertices, the epoch terminates and we proceed to the
next non-empty bucket. The algorithm terminates when B∞
is the only non-empty bucket of index higher than k. Notice
that during a relax operation, it may happen that the tentative
distance of a vertex reduces in a such a manner that the new
value falls in the range of a bucket of lower index. In such a
case, the vertex is moved from its current bucket to the new
bucket. We will treat the above movement as a step within the
relax process. The pseudocode for the algorithm is presented
in Figure 2.

Setting ∆ = 1 yields a variant of the Dijkstra’s algorithm
(due to Dial et al. [7]), whereas setting ∆ = ∞ yields the
Bellman-Ford algorithm. In the rest of the paper, we will
analyze Dijkstra’s algorithm as ∆-stepping algorithm with
∆ = 1.

Distributed Implementation. Our distributed implemen-
tation of the ∆-stepping algorithm is briefly outlined below.
The vertices are equally distributed among the processors
using block distribution, and each vertex is owned by some
processor. A processor would execute only the instructions of
the algorithm that are pertinent to its vertices. Relax operations
require communication among the processors: to perform
Relax(u, v), the owner of the source vertex u will send d(u)
to the owner of the destination vertex v (if the two owners
are distinct). The iterations and epochs are executed in a bulk
synchronous manner. Termination checks and computing the
next bucket index require Allreduce operations.

B. Characteristics of the Basic Algorithms

In this section, we characterize and compare the three basic
algorithms with respect to two key metrics.

Work done. We measure the amount of work done as the
total number of relax operations performed. The above metric
not only determines the processing time, but also the com-
munication time in a parallel setting (since a relax operation
typically involves communication between the owners of the
endpoints of the relaxed edge).

Number of buckets/phases. The number of phases (i.e.,
iterations) taken by the algorithm is another important metric in
determining the efficacy of an algorithm. Each phase is associ-
ated with overheads such as determining whether the algorithm
can be terminated and testing whether we can proceed to the
next bucket. These operations need bulk synchronization and
communication among the processors. Furthermore, dividing
the work across more phases tends to increase the load
imbalance among the processors. A similar reasoning applies



Initialization
Set d(rt)← 0; for all v 6= rt, set d(v)←∞.
Set B0 ← {rt} and B∞ ← V − {rt}.
For k = 1, 2, . . . ,, set Bk ← ∅.

∆-Stepping Algorithm
k ← 0.
Loop // Epochs

ProcessBucket(k)
Next bucket index : k ← min{i > k : Bi 6= ∅}.
Terminate the loop, if k =∞.

ProcessBucket(k)
A← Bk. //active vertices
While A 6= ∅ //phases

For each u ∈ A and for each edge e = 〈u, v〉
Do Relax(u, v)

A′ ← {x : d(x) changed in the previous step}
A← Bk ∩A′

Relax(u, v):
Old bucket: i← b d(v)

∆
c.

d(v)← min{d(v), d(u) + w(〈u, v〉)}.
New bucket : j ← b d(v)

∆
c.

If j < i, move v from Bi to Bj .

Fig. 2. ∆-stepping algorithm

to the case of buckets as well. Consequently, minimizing the
number of phases and buckets is beneficial.

Dijkstra’s algorithm is very efficient in terms of work done.
Each vertex is made active only once and so, each edge 〈u, v〉
is relaxed only twice (once along each direction (Relax(u, v)
and Relax(v, u)). Hence, the total number of relaxations is
2m. On the other hand, in the Bellman-Ford algorithm, a vertex
may be made active multiple times and as a result, an edge
may be relaxed several times. Therefore, Dijkstra’s algorithm
is better than the Bellman-Ford algorithm in terms of work-
done.

Let us next analyze the number of phases. Dijkstra’s algo-
rithm (implemented as ∆-stepping with ∆ = 1) settles only the
vertices having the smallest tentative distance in each iteration.
As a result, the number of phases is exactly the number distinct
shortest distances in the final output. Regarding the Bellman-
Ford algorithm, it can be shown that the number of phases
is at most the depth (number of levels) of the shortest path
tree. Even though both the above quantities can be as high
as the number of vertices, N , the latter quantity is typically
much smaller in practice. Hence, the Bellman-Ford algorithm
is better than Dijkstra’s algorithm, in terms of the number of
phases.

The ∆-stepping algorithm strikes a balance between the
two algorithms and offers a trade-off determined by the param-
eter ∆. The relationship among the three algorithms is given
below:

• Work-done: Dijkstra ≤ ∆-stepping ≤ Bellman-Ford.

• # phases: Bellman-Ford ≤ ∆-stepping ≤ Dijkstra.

Figures 3 provides an illustrative comparison of the different

algorithms for both the metrics on sample graphs used in the
experimental study. For the ∆-stepping algorithm, we have
included three representative ∆ values 10, 25 and 40; the
reported statistics pertain to a refined version of the algorithm
discussed in Section III-A. 4 We can see that the ∆-stepping
algorithm offers a trade-off between the other two algorithms
in terms of work-done and number of phases.

III. OUR ALGORITHM

Our algorithm builds on the three basic algorithms and
obtains improved performance by employing three classes
of optimizations: (i) Pruning; (ii) Hybridization; (iii) Load
balancing. The first strategy reduces the number of relaxations,
whereas the second reduces the number of phases/buckets. The
third optimization improves load sharing among the processors
at high scales. Our experiments show that these techniques pro-
vide significant performance gains over the basic algorithms.

While discussing the proposed optimizations, we will uti-
lize the synthetic graphs used in the experimental study for
the purpose of motivation and illustration. These graphs are
generated according to the Graph 500 specifications, with an
R-MAT random graph generator [8]. The R-MAT process
generates sparse graphs having marked skew in the degree
distribution, where a sizeable fraction of the vertices exhibit
very high degree. These vertices induce a dense sub-graph and
tend to have smaller shortest distances. In contrast, the vertices
of low degree tend to have larger shortest distances.

A. Edge Classification

The pruning heuristic utilizes the concept of edge classifi-
cation, introduced by Meyer and Sanders [6], as a refinement
of their ∆-stepping algorithm. We first describe the concept
and then, propose an improvement.

Meyer and Sanders [6] classify the edges into two groups:
long and short. An edge e is said to be short if w(e) < ∆,
and it is said to be long otherwise. Suppose we are processing
a bucket and let u be an active vertex with an incident edge
e = 〈u, v〉 such that v belongs to a bucket of higher index.
When the edge is relaxed, the tentative distance of v may
decrease. However, observe that if e is a long edge, the
decrease would not be sufficient to cause v to move to the
current bucket. Therefore, it is redundant to relax a long edge
in every phase of the current bucket; instead, it is enough to
relax long edges once at the end of the epoch. Intuitively, cross-
bucket long edges are irrelevant while processing the current
bucket, because we are settling only the vertices present in the
current bucket (including the ones that move into the bucket
while the epoch is in progress).

Based on this observation, the algorithm is modified as
follows. The processing of each bucket is split into two stages.
The first stage involves multiple short edge phases, wherein
only the short edges incident on the active vertices are relaxed.
Once all the vertices in the current bucket are settled and no
more active vertices are found, we proceed to the second stage,
called the long-edge phase. In this phase, all the long edges

4The figure also includes statistics for two other algorithms, called Hybrid
and Prune, that are discussed later in the paper
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Fig. 3. Comparison of different algorithms

incident on the vertices in the current bucket are relaxed. Thus
the long edges get relaxed only once.

We improve the above idea by additionally classifying the
short edges into two groups, as discussed below. Consider the
first stage of processing a bucket Bk and let u be an active
vertex with an incident short edge e = 〈u, v〉 such that v
belongs to a bucket of higher index. Notice that when the edge
is relaxed, the vertex v can potentially move to the current
bucket only if the tentative distance d′(v) = d(u) + w(e)
falls within the current bucket (i.e., d′(v) ≤ (k + 1)∆ − 1).
Thus, if the above criterion is not satisfied, we can ignore the
edge in the first stage. Based on the above observation, the
heuristic works as follows. Let u be an active vertex in any
phase of the first stage. We relax an edge e = 〈u, v〉 only
if the newly proposed tentative distance d′(v) falls within the
current bucket; such edges are called inner short edges. As
before, the first stage is completed when all the vertices in the
current bucket are settled and there are no more active vertices.
Finally, in the long edge phase, we relax all the long edges, as
well as all the short edges e = 〈u, v〉 satisfying the property
that d′(v) = d(u)+w(e) falls outside the current bucket range
(d′(v) ≥ (k+ 1)∆). The short edges relaxed in the long edge
phase are called outer short edges. We call the above heuristic
as the inner-outer short heuristic (IOS).

We can see that the IOS heuristic aims at reducing the
number of short edge relaxations, leaving the number of long
edge relaxations unaffected. Our experiments suggest that the
number of short edge relaxations decreases by about 10%, on
the benchmark graphs.

B. Pruning : Beating Dijkstra’s Algorithm

Among the algorithms discussed so far, Dijkstra’s algo-
rithm performs the best in terms of the number of relaxations:
it relaxes every edge only twice, once along each direction.
The ∆-stepping algorithm (equipped with edge classification)
relaxes the long edges only twice and the IOS heuristic reduces
the number of short edge relaxations. Consequently, the total
number of relaxations performed by the above algorithm is
nearly on par with that of Dijkstra’s, as shown in Figure 3
(b). In this section, we discuss the pruning heuristic which
focuses on the long edges and provides a drastic reduction
in the number of relaxations. The pruning heuristic would
relax only a fraction of the edges in the graph, while ensuring

correctness. Our experimental study shows that the heuristic
causes a reduction by a factor of five of the number of
relaxations and a comparable improvement in terms of per-
formance (GTEPS). The heuristic is inspired by the direction
optimization technique adopted by Beamer el al. [14] in the
context of BFS. In our SSSP context, the presence of weights
on the edges warrants more sophistication. For the sake of
clarity, we explain the heuristic with respect to the basic edge
classification strategy (short and long), ignoring the refined
notion of IOS.

Any epoch involves a first stage consisting of multiple short
edge phases and a second stage consisting of a single long
edge phase. We observe that among the two types of phases,
the long edge phases tend to involve more relaxations. The
intuitive reasoning is that if ∆ is sufficiently small compared
to the maximum edge weight wmax, then more edges are likely
to have weights in the range [∆, wmax] and fall into the long
edge category. Figure 4 illustrates the above phenomenon using
a sample run of the ∆-stepping algorithm. The figure shows the
phase-wise distribution of the number of relaxations. Between
the short and the long edge phases, we see that the latter phases
dominate.

The pruning heuristic targets the dominant long edge relax-
ations. Let us first discuss a natural method for implementing
the long edge phases. Consider the long edge phase associated
with a bucket Bk. Each processor would scan all its active
vertices in Bk. For each such vertex u and for each long
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Fig. 5. Push and Pull Models

edge e = 〈u, v〉 incident on u, the processor would compute
a new tentative distance for the destination vertex v given by
d′(v) = d(u) + w(e) and send (push) the information to the
processor owning v. We call this method the push model.

The main observation behind the prune heuristic is that
a large fraction of relaxations performed by the push model
would be redundant. With respect to the current bucket Bk,
we classify the other buckets into two types: buckets Bi with
i < k are called previous buckets and bucket Bi with i > k are
called later buckets. Consider a vertex u present in the current
bucket Bk and let e = 〈u, v〉 be a long edge incident on u.
Let Bi be the bucket to which v belongs. We classify each
edge into one of three categories: (i) self edge, if v belongs to
the current bucket (i = k); (ii) backward edge, if v belongs
to a previous bucket (i < k); (iii) forward edge, if v belongs
to a later bucket (i > k). Observe that all the vertices in the
previous buckets are already settled and their shortest distances
are known. As a result, it is redundant to relax the self and
backward edges, since such relaxations cannot result in any
change in the tentative distance of v.

Illustration. Figure 5 (a) illustrates the 3 types of edges
and the direction of communication under the push model. �

A natural idea for eliminating the redundant relaxations
is to determine the category of all edges, and to relax only
the forward edges. However, such a method is difficult to
implement in a distributed environment, because the category
of an edge 〈u, v〉 is dependent on the index of the bucket to
which the vertex v belongs. The issue is that the bucket index
of v is known only to the owner of destination vertex v. The
source may obtain the above information by communicating
with the destination. However, such a strategy would defeat
the purpose of avoiding redundant relaxations.

The pruning heuristic overcomes the issue by employing
a pull model of communication, in addition to the natural
push model. In the pull model, the destination side owner
will pull the new tentative distance from the source side
owner. Consequently, relaxing an edge 〈u, v〉 involves two
communications: a request being sent from the owner of v
to the owner of u, and a response in return.

The implementation of the pull model is described next.
Each processor would scan all the vertices owned by it and
contained in the later buckets. For each such vertex v and each
long edge 〈u, v〉 incident on v, a request is sent to the processor

owning u. Upon receiving the request, the owner of u would
send a a response containing the new tentative distance d′(v).

In the above model, we can reduce both the number of
requests and responses based on the observation that all the
previous buckets have already been processed and the pertinent
long edges are taken care of. Consequently, it suffices to send a
response only when the source vertex u belongs to the current
bucket Bk. Furthermore, given the above refinement, it suffices
to send a request only when there is a possibility of getting
a response. For an edge e = 〈u, v〉, the owner of the source
vertex u will send a response only if u belongs to the current
bucket Bk and the shortest distance d(u) of such a vertex
would be at least k∆. Therefore, the newly proposed tentative
distance d′(v) = d(u) +w(e) would be at least k∆ +w(e). If
the current tentative distance d(v) happens to be smaller than
the above quantity, then the above relaxation is useless (since
it cannot decrease the tentative distance of v). Hence, a request
needs to be sent only if d(v) > k∆ + w(e) or alternatively,

w(e) < d(v)− k∆ (1)

Illustration. Figure 5(b) illustrates the communications
involved in the pull model, along with the refinement regarding
the responses. Requests may be sent on a long edge whose
destination vertex is in a later bucket. However, responses are
sent only if the source vertex falls in the current bucket. �

We next illustrate the advantage of the pull model using a
simple example graph, shown in Figure 6. Consider running
the ∆-stepping algorithm with ∆ = 5, using only the push
model. The algorithm would take three iterations (where non-
zero communication takes place). Initially, the root will be
placed in bucket B0 and made active. In the first iteration
(corresponding to the long edge phase of B0), all the edges
incident on the root will be relaxed and the clique vertices will
move to B2. In the second iteration (corresponding to the long
edge phase of B2), all the edges incident on the clique vertices
will be relaxed, resulting in the isolated vertices moving to
bucket B4. Finally, in the third iteration (corresponding to the
long edge phase of B4), all the edges incident on the isolated
vertices will be relaxed. The cost (number of relaxations) per
iteration is shown in the figure; the total is 40. In contrast,
consider running the same algorithm, but applying the pull
model in the second iteration. In this case, the owners of
isolated vertices would send requests and the owners of clique
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vertices would respond. For the second iteration, the push
model has cost 30, whereas the pull model has cost only 10.

C. Push vs. Pull Heuristic

Our algorithm is based on a careful combination of the
push and pull models. Namely, we use the push model for
certain buckets, while applying the pull model for others. In
this section, we present a comparison of the two models and
discuss a heuristic for making the push-pull decision at the
end of each bucket.

Illustration. Figure 7 illustrates the need for using a
combination of both the models. The figure shows the relevant
statistics for two different buckets on an illustrative benchmark
graph. The counts of self, backward and forward edges are
shown (in millions). The figure also provides the number of
requests that would be sent with the pull model. Consider
bucket 2. With the push model, then the number of relaxations
is the total number of self, backward and forward edges and
turns out to be 158 million. On the other hand, under the
pull model, the number of requests is 879 million. Even if
we ignore the communication involved in sending responses,
we see that the push model is better suited for this bucket. In
contrast, consider bucket 3. Under the push model, the number
of relaxations is 778 millions, whereas under the pull model,
the number of requests is 52 million with a comparable number
of replies. The number of messages is at most 104 million;
thus, the pull model is better suited for bucket 3. �

Intuitively, the aggregate degree of vertices present in the
bucket is the main factor that determines the most suitable
model for the bucket. The push model must relax all the
long edges incident on the current bucket, whereas the pull
model must process a subset of the long edges incident on the
later buckets, as determined by equation (1). Consequently, the
push model would be a better choice if the bucket contains
low degree vertices; in contrast, the pull model is likely to
outperform if the bucket contains high degree vertices.

The above discussion shows that applying the same model
uniformly across all buckets is not a good strategy. Our
algorithm employs a suitable model on a per bucket basis.
Towards that goal, we next present a heuristic for selecting
the model for each bucket.

Push-Pull Decision Heuristic. The heuristic works by
estimating the communication volume and the processing time
involved under the push and the pull models.

First, consider the case of communication volume. Let
Bk be the current bucket. For the push model, the volume
is given by the total number of long edges incident on
the vertices contained in the bucket Bk. Assuming that the
parameter ∆ is fixed a priori, the number of long edges
for all vertices can be computed in a preprocessing stage
and the volume can be determined by aggregating across the
relevant vertices. Regarding the pull model, the volume is
given by the number of requests and responses. For each
vertex v belonging to a later bucket and any long edge e
incident on v, a request is sent if w(e) < d(v) − k∆;



equivalently, w(e) ∈ [∆, d(v) − k∆ − 1] (see (1)). Hence,
for computing the number of requests, we need a procedure
that takes as input a vertex v and a range [a, b], and returns
the number of edges incident on v whose weight falls in the
given range. Multiple strategies are possible for implementing
the procedure. Assuming that the edge list of each vertex is
sorted according to weights, the quantity can be computed
via a binary search. Alternatively, histograms could be used
for deriving approximate estimates. The effectiveness of such
strategies in terms of running time and memory overhead needs
to be investigated further. In our experimental setting, the edges
are assigned random weights uniformly distributed in the range
[0, wmax], where wmax is the maximum weight. Exploiting
the above fact, our implementation computes an estimate by
taking the expectation: deg(v)× d(v)−(k+1)∆

wmax
. The number of

responses is difficult to measure since it requires the knowledge
of bucket indices of both the endpoints of the relevant edges.
However, the number of responses can be at most the number
of requests, and we have determined experimentally that this
upper bound works well in practice. Using the above ideas we
can derive estimates on the communication volume for both
the push and the pull models. A natural heuristic is to choose
the model with the lower estimated communication volume.

Our evaluation revealed that the above heuristic accurately
determines the best model, with respect to the communication
volume. However, in terms of the overall running time, the
heuristic fails to make the best choice for about 15% of the
test cases considered. As it turns out, the heuristic only con-
siders one parameter, the overall communication volume, and
ignores the load imbalance among the processors when sending
requests. We fine-tuned the heuristic by taking into account
the maximum number of requests sent by the processors. The
details are omitted in the interest of space. We evaluated the
final heuristic by designing an offline procedure that executes
the algorithm under all possible push/pull decision choices.
The study shows that the final heuristic is highly effective and
achieves near-optimal results on all the configurations consid-
ered. The details are deferred to the experimental section.

The ∆-stepping algorithm extended with the combination
of push and pull strategies, along with the decision heuristic, is
defined as the pruning algorithm. The efficacy of the pruning
algorithm is illustrated in Figure 3 (b) on sample benchmark
runs. In terms of the total number of relaxations, we can
see that among the basic algorithms, Dijkstra’s performs the
best and the pruning algorithm (with ∆ = 25) provides a
remarkable 5x factor improvement with synthetic graphs. In
order to ensure a fair comparison, we included both requests
and responses in the overall count (contributing two times) for
any edge relaxed via the pull mechanism.

D. Hybridization

Our next optimization called hybridization, attempts to
reduce the number of phases and epochs (buckets). As dis-
cussed earlier, the ∆-stepping algorithm is better in terms
of number of relax operations, whereas the Bellman-Ford
algorithm is better in terms of the number of phases/buckets.
The hybridization method strikes a trade-off between the two.
The strategy is to execute the ∆-stepping algorithm for an
initial set of buckets and then switch to the Bellman-Ford
algorithm.

The strategy is motivated by the observation that the ∆-
stepping algorithm may involve a large number of buckets,
but most of the relax operations are concentrated in the initial
set of buckets. The underlying reasoning is as follows. The
vertices having higher degree tend to have smaller shortest
distances and get settled in the buckets having lower index. In
contrast, the vertices having lower degree tend to have larger
shortest distances and get settled in buckets of higher index.
Consequently, the initial epochs dealing with high degree
vertices involve more relaxations.

Exploiting the above phenomenon, we can reduce the
overall number of epochs/phases by applying the ∆-stepping
algorithm only for the first few buckets and then switching to
the Bellman-Ford algorithm. Application of the Bellman-Ford
algorithm can potentially increase the number of relaxations.
However, we determined that the increase is not significant
in practice, since the overall work done in the high index
buckets is relatively low. The strategy is implemented as
follows. If we decide to switch to the Bellman-Ford algorithm
after ` buckets, the buckets B`+1, B`+2, . . . , B∞ will not be
processed individually. Instead, we group these buckets into a
single bucket B and apply the Bellman-Ford algorithm.

Based on experimental observations, we determined that
the number of settled vertices provides a good metric for
determining the switching point. Namely, we fix a threshold
τ ∈ [0, 1]. At the end of processing a bucket Bk, we
compute the total number of vertices settled so far (this is
given by the aggregate number of vertices present in buckets
B0, B1, . . . , Bk). If the fraction of settled vertices exceeds τ ,
then we switch to the Bellman-Ford algorithm. Our experi-
ments suggest that setting τ = 0.4 is a good choice.

Figure 3 (a) illustrates the efficacy of the hybridization
strategy on sample benchmark runs. In terms of number of
phases, we can see that the Bellman-Ford algorithm performs
the best and the hybrid strategy is nearly as good. Our experi-
mental evaluation on two different benchmark family of graphs
shows that the hybridization strategy (with ∆=25) provides sig-
nificant improvement in overall performance (GTEPS) when
applied to the pruning algorithm: up to 30% improvement for
one family and 2x improvement for the second one.

E. Load Balancing

By augmenting the ∆-stepping algorithm with the heuris-
tics of edge classification, IOS, pruning and hybridization, we
get an algorithm that we refer to as OPT. We implemented
the algorithms on a distributed memory system, wherein each
processing node is multi-threaded with shared memory. The
vertices owned by a node are further distributed among the
threads, so that each vertex is owned by a thread.

We conducted an extensive evaluation of the algorithm
OPT on graphs generated according to the R-MAT model.
The model is governed by certain parameters that determine
the characteristics of the generated graphs. Our evaluation
considers two different families of graphs by setting the pa-
rameters as per the specifications given in the Graph 500 BFS
benchmark and a (proposed) Graph 500 SSSP benchmark5;

5http://www.cc.gatech.edu/∼jriedy/tmp/graph500/



Scale 28 29 30 31 32
RMAT− 1 2.4 M 3.8 M 5.9 M 9.4 M 14.4 M
RMAT− 2 31126 41237 54652 72158 95482

Fig. 8. Maximum degree

the two families are denoted RMAT− 1 and RMAT− 2 (see
experimental evaluation section for more details).

Our experiments revealed that the scaling behavior of the
OPT algorithm is not satisfactory, especially on the first family
of graphs, due to load imbalance. The load on a thread can
be measured by the aggregate degree of the vertices owned by
it. Consequently, any skew in the degree distribution leads to
load imbalance among the threads. The maximum degree of
the graphs provides a useful yardstick for measuring the skew.
Figure 8 presents the above quantity for both the family of
graphs for different scales. The average degree for all graphs
was fixed to be a constant (32 edges). However, we can see that
the maximum degree is very high and increases with scale. As
a result, our algorithm suffers from load imbalance, especially
for the RMAT− 1 family.

In order to overcome the issue, we devised an intra-node
thread-level load balancing strategy. We classify the vertices
into two groups based on their degree. A suitable threshold
π is chosen and all vertices having degree higher than π are
declared heavy; the other vertices are called light. We retain the
concept of ownership for both the type of vertices. However,
whenever a heavy vertex needs to be processed, the owner
thread does not relax all the incident edges by itself. Instead,
the edges are partitioned among the threads and all the threads
participate in the process.

As it turns out, the intra-node load balancing is not
sufficient for very high scales (beyond 35) in the case of
RMAT− 1 family. At such scales, the skew in the degree
distribution becomes so extreme that intra-node load balancing
techniques prove insufficient and inter-node load balancing
becomes necessary. We overcome the issue by employing an
inter-node vertex splitting strategy. The idea is to split the
vertices having extreme degree and distribute their incident
edges among other processing nodes. The SSSP framework
provides a simple and elegant mechanism for accomplishing
the above goal. Consider a vertex u that we wish to split.
We modify the input graph by create ` new vertices (called
proxies) u1, u2, . . . , u`, for a suitable value `. All the proxies
are connected to the vertex u via edges with zero weight. The
set of edges originally incident on u is partitioned into ` groups
E1, E2, . . . , E`. The edges in each group Ei are modified so
that they become incident on the proxy ui (instead of u).
Observe that solving the SSSP problem on the original and the
new graph are equivalent (namely, the shortest distances in the
new graphs are the same as that of the original graph). The
vertices are selected for splitting based on a degree threshold
π′ (similar to the intra-node balancing procedure).

We have determined robust heuristics to determine the
thresholds π and π′, and the number of proxies and partitioning
of the neighborhood (namely, the sets E1, E2, . . . , E`). The
details are omitted for brevity.

IV. EXPERIMENTAL ANALYSIS

In this section, we present an experimental evaluation of
our algorithms on synthetic R-MAT and real world graphs.
The experiments were conducted on a Blue Gene/Q system.

A. Architecture Description and Implementation

Blue Gene/Q (BG/Q) [26], [27], [28] is the third generation
of highly scalable, power efficient supercomputers of the IBM
Blue Gene family, following Blue Gene/L and Blue Gene/P.
The two largest Blue Gene/Q supercomputers are Sequoia, a
96 rack system installed at the Lawrence Livermore National
Laboratory, and Mira, a 48 rack configuration installed at the
Argonne National Laboratory.

In order to get the best performance out of Blue
Gene/Q, we have utilized three important optimizations. 1) A
lightweight threaded model where each thread has complete
access to all memory on a node. 2) Direct access to the
System Processing Interface (SPI) communication layer. Inter-
node communication is implemented at the SPI level, a thin
software layer allowing direct access to the “metal” injection
and reception DMA engines of the network interface. Each
thread is guaranteed private injection and reception queues
and communication does not require locking. Threads can
communicate with very little overhead, less than a hundred
nanoseconds, with a base network latency of half a microsec-
ond in the absence of contention. The SPI interface is also
capable of delivering several tens of millions of messages
per second per node [28]. 3) L2 Atomics. We rely on the
efficient implementation of a set of atomic operations in the
nodes’ L2 caches to implement the relaxations. Each core can
issue an atomic operation every other clock cycle, providing a
considerable aggregate update rate.

Each Blue Gene/Q node has 16 cores supporting four-way
SMT and our implementation uses 64 threads per node. The
implementation is entirely written in C and uses Pthreads for
on-node threading and SPI for communication; the compiler
used is GCC 4.4.6. The data in the experimental section was
collected on Mira.

B. Graph Configurations

We conducted an extensive experimental evaluation of the
different graph algorithms discussed in the paper on synthetic
graphs, and a preliminary study on real world graphs. The
synthetic graphs were generated using the R-MAT model [8].
Each edge is determined using a random process governed
by four parameters (probabilities) A, B, C and D satisfying
A + B + C + D = 1. An edge is generated by choosing the
endpoints u and v via a random bit fixing mechanism directed
by the four probabilities.If all parameters equal (1/4), then all
pairs of vertices are equally likely to be selected as the edge.
Otherwise, there is a skew in the distribution, determined by
the deviation from the mean 1/4.

The experimental study considers two families of synthetic
R-MAT graphs generated according to two different bench-
mark specifications that use different R-MAT parameters: (i)
RMAT− 1 : this family uses the latest Graph 500 [12] BFS
benchmark specification, wherein A = 0.57, B = C = 0.19
and D = 1 − A − 2B = 0.05; (ii) RMAT− 2 : this family
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Fig. 9. RMAT− 1: Performance of ∆-stepping algorithm

uses the Graph 500 SSSP benchmark (proposed) specification6,
where A = 0.50, B = C = 0.1 and D = 0.3. We assign edge
weights according to the SSSP benchmark proposal for both
families: the weights are selected independently at random by
picking an integer in the range [0, 255]. Both families generate
sparse graphs using an edge factor of 16, namely the number
of undirected edges is m = 16 · N . The differences in the
R-MAT parameters have an impact on the characteristics of
the two families and the behavior of our algorithms. We first
discuss the experimental evaluation for both families and then
present a brief comparison.

The experiments are based on weak scaling: the number
of vertices per Blue Gene/Q node was fixed at 223 and the
number of nodes was varied from 32 to 32, 768. We present
a detailed analysis of the different algorithms on both RMAT-
families on systems of size up to 4, 096 nodes, followed by a
brief report on the performance of the OPT algorithm on larger
systems.

C. RMAT− 1 Family

Here, we consider the RMAT− 1 family and evaluate the
algorithms on systems of size up to 4, 096 nodes.

∆-stepping. The first experiment evaluates our imple-
mentation of the ∆-stepping algorithm (with short and long
edge classification) for different values of ∆. We tested various
values of ∆ ranging from 1 (Dijkstra’s) to ∞ (Bellman-Ford).
The results are shown in Figure 9. As discussed earlier, the
conflicting aspects of number of phases/buckets and work-
done play a key role in determining the overall performance.
Dijkstra’s algorithm performs poorly, because it utilizes a large
number of buckets. Bellman-Ford is equally bad. ∆ values
between 10 and 50 offer the best performance.

Evaluation of the proposed heuristics. Given the above
results, we fixed ∆ = 25 and evaluated our heuristics by
comparing them against the baseline ∆-stepping algorithm.
Three algorithms are considered in the evaluation: (i) Del-25:
the baseline ∆-stepping algorithm (along with short-long edge
classification); (ii) Prune-25: the Del-25 algorithm augmented
with the pruning and IOS heuristics; (iii) OPT-25 : Prune-25
augmented with the hybridization heuristic.

The GTEPS performance of the algorithms is shown in
Figure 10 (a). Considering the case of 2, 048 nodes (scale-

6http://www.cc.gatech.edu/∼jriedy/tmp/graph500/

34 graphs), we see that the pruning strategy is very effective
and provides a factor five improvement, and the hybridization
strategy offers an additional improvement of about 30%.
Combining the above two heuristics, the OPT-25 algorithm
improves the baseline ∆-stepping algorithm by a factor of
about eight.

We performed a detailed analysis of the algorithms by
dividing the overall time taken into two groups. (i) Bucket
processing overheads (denoted BktTime): We must identify the
current bucket vertices at the beginning of each epoch, and
the set of active vertices at the beginning of each phase. The
index of the next (non-empty) bucket must be computed at the
end of each epoch. (ii) Relaxation time (denoted OtherTime):
This includes processing and communication involved in the
relaxations.

Figure 10 (b) presents the breakdown of the running time
of the three algorithms on scale-34 graphs (2, 048 nodes). We
see that compared to the baseline Del-25 algorithm, pruning
targets the relaxation time and achieves a reduction by a factor
of about seven (while incurring the same bucket processing
time, as expected). However, the hybridization strategy reduces
the bucket processing time and nearly eliminates the overhead.

The above phenomenon can be explained by considering
the two underlying statistics: the number of relaxations and
number of buckets. Figure 10 (c) presents the number of
relaxations (expressed as an average over all the threads) and
we see that the pruning strategy obtains a reduction by a factor
of about 6. In Figure 10 (d), we see that Del-25 uses about
30 buckets, whereas the hybridization strategy converges in at
most 5 buckets. It is interesting to note that the number of
buckets is insensitive to the graph scale.

Impact of Load Balancing. We analyzed the effect of
the parameter ∆ on the OPT algorithm, by considering values
in the range 10 to 50. For the sake of clarity, the GTEPS
performance is reported for three representative values of ∆ =
10, 25 and 40, as shown in Figure 10 (e). We see that OPT-10
performs the best. However, all the versions suffer from poor
scaling. We analyzed the above phenomenon and observed that
the load imbalance is the root cause. As discussed in Section
III-E, the above effect can be attributed to the remarkable skew
in the degree distribution of RMAT− 1 graphs. The skew is
highlighted by the maximum vertex degrees, shown in Figure
8.

We evaluated the effectiveness of our load balancing strate-
gies. As it turns out, on graphs of scale up to 35 (or system size
up to 4, 096 nodes), the skew in the degree distribution is not
high enough to warrant the inter-node load balancing technique
of vertex splitting. The simpler intra-node thread level load
balancing is sufficient. Figure 10 (f) presents the GTEPS for
the load balanced version LB− Opt. Comparing with Figure 10
(e), we can see that load balancing improves the performance
by a factor of two to eight, depending upon the value of ∆.
Furthermore, the load balanced version achieves near perfect
scaling across all values of ∆, with ∆ = 25 performing the
best.

D. RMAT− 2 Family

Here, we present a brief description of our experimen-
tal evaluation of the RMAT− 2 family. As in the case of
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RMAT− 1, we compared three algorithms Del-25, Prune-25
and OPT-25 considering GTEPS, number of buckets, number of
relaxations and time breakdown. The results are shown in Fig-
ure 11. We see that compared to Del-25, the pruning strategy
cuts the number of relaxations in half (Figure c) and improves
the relaxation time (OthrTime) by 30% (Figure b). However,
due to the high bucket processing time (BktTime), the overall
improvement in GTEPS is only about 12%. The hybridization
strategy yields higher gains. It reduces the number of buckets
by a factor of 20 and achieves a corresponding reduction in
the bucket processing time. As a result, OPT-25 is three times
faster.

The performance of the OPT algorithm for different ∆
values is shown in Figure 11 (e). For all values of ∆, the OPT
algorithm scales reasonably well and so our load balancing
strategies did not yield significant improvement for this family
of graphs. Among these versions, OPT-40 provides the best
results.

E. Comparison of the Two Families

The two graph families are generated using different R-
MAT parameters, resulting in different graph characteristics.
Both families show a strong skew in the degree distribution,
as shown in Figure 8. While the average degree remains
a constant at 32 directed edges, the maximum degree is
substantially larger and increases with the scale. Moreover, the
two families exhibit contrasting behavior: the maximum degree
for RMAT− 1 is in the order of million of edges, whereas the
growth is slower in the RMAT− 2 family.

The distinction between the two families has an impact
on the effectiveness of our heuristics. Consider the pruning
strategy. With the RMAT− 1, the heuristic avoids processing
high degree vertices by employing the pull mechanism and
achieves a higher rate of pruning. In contrast, the degree
distribution for the RMAT− 2 is more uniform and there-
fore the push and pull mechanisms do not differ much in
terms of relaxations. Consequently, the pruning factor is less
dramatic. Compared to the first family, the shortest distances
are distributed over a larger range of values, requiring more
buckets. Consequently, the hybridization strategy can identify
opportunities for optimization and is more effective. In a
similar vein, the skew in the degree distribution determines
load imbalance, therefore our load balancing techniques are
more effective for the RMAT− 1 family. We conclude that
the performance on RMAT− 1 graphs is better than that of
RMAT− 2 graphs primarily because more effective pruning
is achieved in the former family.

F. Massive Graphs and Systems

All the experiments described earlier deal with graphs of
scale up to 35 and system sizes up to 4, 096 nodes. Here, we
present a brief experimental evaluation using larger graphs, up
to scale 39, and systems, up to 32, 768 nodes.

At such large scales, the thread level load balancing strat-
egy is not sufficient for processing RMAT− 1 graphs and we
employ the two-tiered strategy involving the vertex-splitting
technique. The skew in the degree distribution for RMAT− 2
is sufficiently small so that we do not need to utilize load
balancing procedures.

Nodes 1024 2,048 4,096 8,192 16,384 32768
RMAT− 1 173 331 653 1102 1870 3107
RMAT− 2 70 129 244 460 840 1480

Fig. 12. Performance on large systems

Figure 12 presents the performance (GTEPS) achieved
by the final algorithms on the two families for system sizes
ranging from 1, 024 to 32, 768 nodes, scale 33 to 39. We used
the ∆ values of 25 and 40 for the two families, respectively.
We see that in the largest configuration of 32, 768 nodes and
scale-39 graphs, the algorithms achieve about 3, 100 and 1, 500
GTEPS, respectively. The results show that the combination
of the different heuristics proposed in this paper can achieve
high performance and good scaling on large graphs and system
sizes, and is also robust in terms of graph imbalances.

G. Evaluation of Push-Pull Decision Heuristic.

In this section, we discuss our validation of the efficacy
of the push-pull decision heuristic. We designed an evaluation
routine for checking whether the heuristic makes the correct
sequence of decisions. Consider an input graph and a root,
and suppose the ∆-stepping algorithm (in conjunction with
the hybridization strategy) involves k buckets. At the end of
each epoch, the pruning algorithm needs to make a decision
on whether to use the push or pull mechanism, and thus, 2k

different sequences of decisions are possible. The validation
routine considers all the possible decision sequences and
computes the corresponding running time. The time taken by
the best of these sequences is compared against the running
time obtained by applying our push-pull decision heuristic.

We conducted the validation process on both graph families
with ∆ = 25. We fixed the number of vertices per rank to be
223 and varied the number of ranks from 32 to 1, 024. For
each configuration, 16 random roots were generated and the
validation was performed. We found that our heuristic made
the best sequence of decisions on all the test cases.

H. Real Life Graphs.

In this section, we present a preliminary evaluation of our
algorithm on three real life graphs related to social networks7,
shown in the table below. We compared our OPT algorithm with
the baseline ∆-stepping algorithm on system sizes up to 128
nodes. For both algorithms, setting ∆ = 40 turned out to be
the best configuration. The performance of the two algorithms
is shown in the table below.

GTEPS Vertices Edges Del-40 Opt-40
Friendster 63 million 1.8 billion 1.8 4.3

Orkut 3 million 117 million 2.1 4.6
Live Journal 4.8 million 68 million 1.1 2.2

It can be seen that OPT provides a factor two improvement
in performance over the baseline algorithm. In the case of the
Friendster graph, we also performed a scaling study up to 1024
nodes. The experiment showed that OPT scales well and yields
40 GTEPS on 1, 024 nodes, vs 20 GTEPS provided by the
baseline algorithm.

7http://snap.stanford.edu



V. CONCLUSION

In this paper we presented a collection of parallel algo-
rithms for the Single Source Shortest Path (SSSP) problem
on distributed memory machines. We have used an arsenal
of algorithmic techniques to reduce redundant communication
and computation, minimizing the number of relaxations –
the distance updates of each vertex. We have identified three
main classes of optimizations: hybridization of Bellman-Ford
and Delta stepping; various pruning techniques based on the
edge weights, topological properties of the edges and direction
optimization; in order to scale to thousands of nodes, we have
applied careful thread-level and inter-node level load balancing
and used lightweight communication libraries that provide
direct thread-to-thread communication and optimized active
messaging. The results obtained on 32, 768 nodes of Mira,
the leadership supercomputer at Argonne National Laboratory,
show an impressive processing rate of 3, 100 GTEPS on a scale
39 R-MAT graph with 239 vertices and 242 undirected edges.

Acknowledgments: This research used resources of the
Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357. We express our sincere thanks to Kalyan Ku-
maran, Ray Loy, Susan Coghlan and the other members of the
ALCF support team for their help and support.

REFERENCES

[1] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[2] L. Freeman, “A Set of Measures of Centrality Based on Betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, March 1977.

[3] E. W. Dijkstra, “A Note on Two Problems in Connection with Graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[4] R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathemat-
ics, vol. 16, pp. 87–90, 1958.

[5] L. A. Ford, “Network Flow Theory,” Report P-923, The Rand Corpo-
ration, 1956.

[6] U. Meyer and P. Sanders, “∆-stepping: A Parallelizable Shortest Path
Algorithm,” Journal of Algorithms, vol. 49, no. 1, pp. 114–152, October
2003.

[7] R. Dial, F. Glover, D. Karney, and D. Klingman, “A Computational
Analysis of Alternative Algorithms and Labeling Techniques for Find-
ing Shortest Path Trees,” Networks, vol. 9, no. 3, pp. 215–248, 1979.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive
Model for Graph Mining,” in Proc. of the Fourth SIAM International
Conference on Data Mining, (SDM ’04), Lake Buena Vista, Florida,
USA, April 2004. SIAM, 2004, pp. 442–446.

[9] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker Graphs: An Approach to Modeling Net-
works,” Journal of Machine Learning Research, vol. 11, pp. 985–1042,
2010.

[10] D. A. Bader and K. Madduri, “Designing Multithreaded Algorithms for
Breadth-First Search and st-Connectivity on the Cray MTA-2,” in Proc.
of Intl. Conf. on Parallel Processing (ICPP ’06), Columbus, Ohio, USA,
August 2006. IEEE Computer Society, 2006, pp. 523–530.

[11] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the Speed and Scalability Barriers for
Graph Exploration on Distributed Memory Machines,” in Proc. of Intl.
Conf. on High Performance Computing Networking, Storage and Anal-
ysis, (SC ’12), Salt Lake City, UT, USA - November 2012. IEEE/ACM,
2012.

[12] http://www.graph500.org.

[13] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak, “An Experi-
mental Study of A Parallel Shortest Path Algorithm for Solving Large-
Scale Graph Instances,” in Proc. of the Ninth Workshop on Algorithm
Engineering and Experiments, (ALENEX ’07), New Orleans, Louisiana,
USA, January 2007. SIAM, 2007.

[14] S. Beamer, K. Asanovic, and D. A. Patterson, “Direction-optimizing
Breadth-first Search,” in Proc. of Intl. Conf. on High Performance
Computing Networking, Storage and Analysis, (SC ’12), Salt Lake City,
UT, USA - November 2012. IEEE/ACM, 2012.

[15] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses
in Improved Network Optimization Algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 596–615, 1987.

[16] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine, “Single Source
Shortest Paths with the Parallel Boost Graph Library,” The Ninth
DIMACS Implementation Challenge: The Shortest Path Problem, Pis-
cataway, NJ, November 2006.

[17] K. Nikas, N. Anastopoulos, G. I. Goumas, and N. Koziris, “Employ-
ing Transactional Memory and Helper Threads to Speedup Dijkstra’s
Algorithm,” in Proc. of Intl Conf. on Parallel Processing, (ICPP ’09),
Vienna, Austria, September 2009. IEEE Computer Society, 2009, pp.
388–395.

[18] S. J. Plimpton and K. D. Devine, “MapReduce in MPI for Large-scale
Graph algorithms,” Parallel Computing, vol. 37, no. 9, pp. 610–632,
September 2011.

[19] R. Paige and C. Kruskal, “Parallel Algorithms for Shortest Path
Problems,” in Proc. of Intl. Conf. on Parallel Processing (ICPP ’85),
University Park, PA, USA, August 1985. IEEE Computer Society, 1985,
pp. 14–20.

[20] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, “Relaxed
Heaps: An Alternative to Fibonacci Heaps with Applications to Parallel
Computation,” Communications of the ACM, vol. 31, no. 11, pp. 1343–
1354, November 1988.
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