
IBM DeveloperWorks AIX Virtual User Group
February 18th, 2016 webinar

The IBM Power8
Processor Core
Microarchitecture
(a white paper summary with
thoughts and considerations)

Prepared and Edited by Earl Jew (not Prepared and Edited by Earl Jew (not Prepared and Edited by Earl Jew (not Prepared and Edited by Earl Jew (not an an an an author of the whitepaper)author of the whitepaper)author of the whitepaper)author of the whitepaper)
earlj@us.ibm.comearlj@us.ibm.comearlj@us.ibm.comearlj@us.ibm.com; (310) 251; (310) 251; (310) 251; (310) 251----2907; Los Angeles, California, USA2907; Los Angeles, California, USA2907; Los Angeles, California, USA2907; Los Angeles, California, USA
Senior IT Consultant for IBM Power Systems and System StorageSenior IT Consultant for IBM Power Systems and System StorageSenior IT Consultant for IBM Power Systems and System StorageSenior IT Consultant for IBM Power Systems and System Storage
IBM STG Lab Services Power Systems Delivery PracticeIBM STG Lab Services Power Systems Delivery PracticeIBM STG Lab Services Power Systems Delivery PracticeIBM STG Lab Services Power Systems Delivery Practice

ABSTRACT

The POWER8 processor is the latest RISC (Reduced Instruction Set Computer)
microprocessor from IBM. It is fabricated using the company’s 22-nm Silicon on Insulator
(SOI) technology with 15 layers of metal, and it has been designed to significantly improve
both single-thread performance and single-core throughput over its predecessor, the
POWER7 processor.

The rate of increase in processor frequency enabled by new silicon technology
advancements has decreased dramatically in recent generations, as compared to the historic
trend. This has caused many processor designs in the industry to show very little
improvement in either single-thread or single-core performance, and, instead, larger
numbers of cores are primarily pursued in each generation.

Going against this industry trend, the POWER8 processor relies on a much improved core
and nest microarchitecture to achieve approximately one-and-a-half times the single-thread
performance and twice the single-core throughput of the POWER7 processor in several
commercial applications. Combined with a 50% increase in the number of cores (from 8 in
the POWER7 processor to 12 in the POWER8 processor), the result is a processor that leads
the industry in performance for enterprise workloads.

This paper describes the core microarchitecture innovations made in the POWER8 processor
that resulted in these significant performance benefits.

Based on the article by the same title in

IBM JOURNAL OF RESEARCH & DEVELOPMENT VOL. 59 NO. 1 PAPER 2 JANUARY/FEBRUARY 2015

Written by B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward,
M. D. Brown, J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M.
Kaltenbach, T. Karkhanis, K. M. Fernsler

Presenter Commentary Caveat

• This presentation is an intermix of excerpts/figures from the original
whitepaper and presenter commentary.

• The blue borders designate Presenter Commentary (like this slide).

• The presenter’s comments are based solely on the words of the whitepaper,
and do not offer any insider’s insight beyond the content of this whitepaper.

• Please judge the presenter’s thoughts and considerations accordingly.

• That is, I don’t know anything more than what we all can read together here.

This paper describes the core microarchitecture innovations made in the
POWER8 processor that resulted in these significant performance benefits.

Based on principles adopted in the POWER7 multi-core processor, the
POWER8 processor continues to emphasize a balanced multi-core design,
with significant improvements in both single-thread and core performance
and modest increases in the core count per chip.

This contrasts with other multi-core processor designs in the industry today,
for which an increase in the core count is primarily pursued with little
improvement in single-thread or core performance.

In this eighth-generation POWER processor, IBM continues to innovate its
RISC (Reduced Instruction Set Computer) product line by introducing a
twelve-core multi-chip design, with large on-chip eDRAM (embedded
Dynamic Random Access Memory) caches, and high-performance eight-way
multi-threaded cores, implementing the Power ISA (Instruction Set
Architecture) version 2.07.

Our goal for the POWER8 processor was to significantly improve the socket-
level, core-level and thread-level performance in each of the multiple
simultaneous multithreading (SMT) modes relative to the POWER7
processor.

This was achieved by keeping the area and power requirement of each
POWER8 processor core (POWER8 core) sufficiently low to allow twelve such
cores on the processor chip while maintaining its power at the same level as
that of the POWER7 processor chip.

• Regarding “to significantly improve the socket-level, core-level and thread-
level performance in each of the multiple simultaneous multithreading
(SMT) modes”, because there are as many as 12 CPUcores per socket
(which is a tremendous amount of processing capacity), configuring an LPAR
to reside on only one socket that accesses only local DIMMs – should be a
pervasive POWER8 imperative – given its ideal performance advantages.

• Tight&Fat: Configure fewer vCPUs, grant 0.7-0.9 eCPU per vCPU, and drive
the core-level harder with SMT-2/4/8 thread-level workloads on POWER8.

• View/confirm any configuration with AIX:lssrad -av output.

• Study&practice using the Dynamic Platform Optimizer (DPO) utility.

An at-a-glance comparison between the POWER7 and the POWER8
processors can be seen in Table 1.

Because of the slowdown in frequency increases from silicon technology,
thread and core performance were improved through micro-architectural
enhancements such as an:

• advanced branch prediction mechanism

• extensive out-of-order execution

• dual pipelines for instruction decode, dispatch, issue, and execution

• advanced eight-way simultaneous multi-threading

• advanced prefetching with more precise application software control over
the prefetching mechanism

• doubled bandwidth throughout the cache and memory hierarchy

• a significant reduction in memory latency relative to the POWER7 processor
design

Many business analytics applications run in thread-rich configurations, to
exploit the inherent parallelism in these computations. To accommodate
them, the POWER8 core doubled the hardware thread parallelism to 8-way
multithreading (referred to as SMT8).

Because of the doubling in size of the L1 data cache and L2 and L3 caches,
each thread in a POWER8 core can have as much resident memory footprint
as a thread in a POWER7 core.

In fact, it was a design requirement that at each common multithreading
level -- ST (single-thread), SMT2 (two-way multithreading), and SMT4 (four-
way multithreading) -- the individual thread performance on a POWER8 core
should be better than on a POWER7 core.

In single-thread mode, practically all of the core resources can be used by
the single thread.

At the same time, these core resources can efficiently support eight threads
per core. The core can dynamically change mode among ST, SMT2, SMT4, and
SMT8, depending on the number of active threads.

Cloud instances often do not have enough simultaneously active application
threads to utilize all eight hardware threads on the POWER8 core.

To instead exploit the parallelism across cloud instances, the POWER8 core
can be put in a “split-core mode”, so that four partitions can run on one core
at the same time, with up to two hardware threads per partition.

• This knocked my socks off!! This means a vCPU in SMT-2 mode from four
different LPARs can run concurrently on a given POWER8 core.

• In other words, four LPARs can have a vCPU in SMT-2 mode running on the
same POWER8 core at the same time.

• For tuning, it means vCPU time-slice fragmentation (the 4th Dimension of
Affinity) could eventually be partially mitigated by use of split-core mode.

• This POWER8 capability is also called “micro-threading”.

• I believe this is only offered with PowerKVM, i.e. redbook:IBM PowerKVM
Configuration and Use (sg248231.pdf Oct 2014)

Modern computing environments, and cloud systems in particular, require
extra layers of security and protection in order to deliver a safe and usable
solution to the end user.

For that reason, the POWER8 processor includes several features that
accelerate cryptographic codes.

In particular, the POWER8 core includes a cryptographic unit supporting new
Power ISA instructions for the computation of AES (Advanced Encryption
Standard), SHA (Secure Hash Algorithm), and CRC (Cyclic Redundancy Check)
codes.

The IBM 4764 PCI-X Cryptographic Coprocessor was withdrawn in 2011.

Big data applications typically have a larger memory footprint and working set
than traditional commercial applications. Correspondingly, compared to the
POWER7 core, the POWER8 core has an L1 data cache that is twice as large,
has twice as many ports from that data cache for higher read/write
throughput, and has four times as many entries in its TLB (Translation
Lookaside Buffer).

In addition, POWER8 technology expands the addressing range of memory
accesses using fusion to allow applications to access large data sets more
quickly. As mentioned, the L2 and L3 caches in the POWER8 processor are
also twice the size of the corresponding POWER7 processor caches, on a per
core basis.

• The trend of POWER engineering is clearly about keeping more data closer
with 2 times larger L1 data cache and 2 times larger L2 and L3 caches.

• Having twice as many ports from that data cache for higher read/write
throughput means moving more data faster to the 16 execution pipelines.

• Having four times as many entries in its TLB (Translation Lookaside Buffer)
means cache-speed address translations. The TLB is a cache of address
translations. Any TLB miss means searching the hardware page table (HPT;
residing on slower main memory) for the missed address translation.

• Keeping Tight&Fat on one socket substantially improves all of the above.

Optimally exploiting the POWER8 core microarchitecture

• The best way to exploit POWER8/AIX is to first understand your workload with
meaningful POWER/AIX tactical monitoring, i.e. “knowing it by the numbers”.

• Open invitation: Write to me for my script and I promise to assist in this regard.

• Optimal exploitation doesn’t always mean the fastest performance/throughput

• It may mean the most productivity-per-CPUcore or productivity-per-license

• It may mean the quickest responsiveness at the expense of wasted CPUcycles

• Sometimes you just care to understand what your workload is doing better

• Sometimes you want to learn what else can be done to improve a situation

• Other times there is a crisis and you urgently need another willing set-of-eyes

• Try me: Call or write and I will do what I can to help. Really truly, I’m real.

• I work for IBM Lab Services and Training; we’re a different delivery practice

IBM Systems Lab Services, U.S. Power AIX & LoP Offerings

Power (VM) Virtual Management
� PowerVM HealthCheck / Best Practices Review
� PowerVM Customized Training (NPIV, LPM, AMS/AME, etc.)
� PowerVM Provisioning Toolkit (with NEW! “Capture” capability)
� IBM Proactive Monitoring for AIX & VIOS (“ProMon”)
� NEW! PowerVM LPM Automation Tool (from China Labs team)
� Power Enterprise Pools Enablement
� WPAR (Workload Partition) Implementation and/or Migration

Power (HA) High Availability
� PowerHA Customized Training
� PowerHA SE Implementation / HealthCheck
� PowerHA & Storage Implementation for Disaster Recovery
� PowerHA EE Implementation for DR (incl. Toolkit “Capture”)

Power Performance
� Power Virtualization Performance (PowerVP)
� Performance Optimization Assessment (POA)
� Oracle on AIX Performance Assessment Services
� Capacity Planning Tool (CPT) installation & configuration
� DB2 on AIX Application Performance Assessment (DB2 BLU)
� IBM Tivoli Monitoring (ITM) support for clients with AIX EE

Power Workshops
� Power8 Transition Workshop
� NEW! Power8 Provisioning Assurance
� Power/AIX Monitoring and Tuning (not using NMON)
� IBM Power & Storage Planning for Disaster Recovery Workshop
� Data Center Availability Assessment

Linux
� Power IFL Implementation
� Linux on Power (LoP) Customized Training
� IBM PowerKVM
� Linux on PowerVM
� Linux on PowerVM Performance / HealthCheck
� Linux Workloads Assessment Workshop
� NEW! Linux on Power education offerings to expand customer

training beyond the 1-day jump-starts from ATS
� Field Programmable Gate Array (FPGA) Development Platform RPQ

Big Data Enablement
� IBM Power Analytics Infrastructure Enablement

(DNS, DHCP, email, virus scanning, file sharing, etc.)

� BigData Assessment & Jumpstart Services
� Linux on Power BigData - InfoSphere BigInsights
� Linux on Power BigData - InfoSphere InfoStreams
� Linux on Power BigData - Executive Infrastructure Review

Cloud
� Cloud Design Workshop for custom cloud enablement
� PowerVC Implementation as a Pre-req to CMO
� Cloud Manager with OpenStack (CMO) Implementation
� Cloud IT Optimization Assessment
� Advanced Cloud on Power Services
� IBM Smart Analytics Optimizer Enablement
� SAP Landscape Virtualization Management Design & Planning

Workshop
� SAP Landscape Virtualization Management Implementation
� Other “Open Stack” Consulting Services

Stephen Brandenburg – sbranden@us.ibm.com -OR- Linda Hoben – hoben@us.ibm.com -OR- Michael Gordon – mgordo@us.ibm.com

Security
� IBM AIX Security Assessment

� LDAP Integration including Pass-through Authentication (PTA)

� IBM PowerSC™ Security & Automated Compliance Workshop

� PowerSC – Trusted Firewall Workshop (TWR)

� PowerSC – Trusted Surveyor Workshop (TS)

� AIX Auditing Workshop

� AIX Hacking Prevention Workshop

� Encrypted File System (EFS) Workshop

� Role Based Access Control (RBAC) Workshop/Support Services

SAP HANA on Power
• Installation and POC

• Health Check Assessment

IBM Systems Lab Services & Training - Power Systems
Services for AIX, i5OS, and Linux on Power

http://www.ibm.com/systems/services/labservices/platforms/labservices_power.html

Power/AIX Performance and Tuning Workshop (4.0-days on-site)

Terms and Conditions: Actual Tasks, Deliverables, Service Estimates,,and travel requirements vary with each client’s environment. When we have reached a final agreement on the scope of your initiative and our

level of assistance, a formal document describing our proposed work effort, costs, etc, will be presented for your approval and signature.

Overview:

This offering aims to grow and exercise the Power/AIX tactical skills of its

attendees through lectures and lab sessions on their live-running AIX

servers. The lectures describe the AIX Virtual Memory Manager, Power7

and Power8 Affinity, tactics for indicating performance issues, and

remedial tactics to resolve these issues.

Throughout each lecture, the workshop illustrates its topics and tactics on the

attendee’s live-running Power/AIX LPARs as lab session exercises. As

such, an incidental list of directly-observed and empirically-justified

remedial tactics can be accumulated by each attendee as a by-product of

the workshop.

The workshop is intended as a decidedly interactive venue. The attendee’s

questions are addressed immediately.

WHO benefits from this workshop and WHY ?
• Clients with Power6/7/8 servers with AIX 6.1-7.2 LPARs housing

workloads.

• Clients who care to monitor their Power/AIX workloads by the numbers.

• Clients with workloads they suspect are not executing optimally but have

been unable to determine what and why.

• Historically, Power/AIX system administrators, database administrators,

application administrators, storage administrators, and IT architects have

all learned more than they could imagine in a 4.0-day workshop.

Duration

• 28 to 32 hours (depending on the ability to absorb rigorous content)

• 6 to 8 hours per day (does not include an hour for lunch)

• Request a conference room with a PC projector

• Request an authorized staffer to “putty” into your Power/AIX LPARs

Delivery Details:

This is a customer onsite offering consisting of standup lectures and highly

interactive lab sessions to your live-running LPARs. Presentation handouts are

provided in PowerPoint format.

Lecture/Lab Session titles:

Part One: A Tactical Overview of Power/AIX Virtual Memory Manager

mechanisms

Part Two: The Four Dimensions of Power7/Power8 Affinity

Part Three: How to use Power/AIX Historical/Cumulative Statistics to Indicate

Performance Issues

Part Four: How to use Power/AXI Real-time Statistics to Indicate Performance

Issues

Part Five: Remedial Tactics for Performance Tuning the Indicated Issues of

Power/AIX Workloads

Part Six: IBM Power8 Processor Core Microarchitecture: Thoughts and

Considerations

Linda Hoben – Opportunity Manager hoben@us.ibm.com 1-720-395-0556
Stephen Brandenburg – Opportunity Manager sbranden@us.ibm.com 1-301-240-2182

IBM Systems Lab Services & Training - Power Systems
Services for AIX, i5OS, and Linux on Power

Figure 1 shows the POWER8 core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-point
unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.

Organization of the POWER8 processor core

In a given cycle, the core can fetch up to eight instructions, decode and
dispatch up to eight instructions, issue and execute up to ten instructions, and
commit up to eight instructions.

There are sixteen execution pipelines within the core:

• two fixed-point pipelines

• two load/store pipelines

• two load pipelines

• four double-precision floating-point pipelines (which can also act as eight
single-precision floating-point pipelines)

• two fully symmetric vector pipelines that execute instructions from both
the VMX (Vector eXtensions) and VSX (Vector-Scalar eXtensions) instruction
categories in the Power ISA

• one cryptographic pipeline

• one branch execution pipeline

• one condition register logical pipeline

• one decimal floating-point pipeline

To satisfy the high bandwidth requirement of many commercial, big data, and
HPC workloads, the POWER8 core has significantly higher load/store
bandwidth capability compared to its predecessor.

While the POWER7 processor can perform two load/store operations in a
given cycle, the POWER8 processor can perform two load operations in the
load pipes, in addition to two load or store operations in the load/store
pipes in a given cycle.

As was the case with the POWER7 processor, the large TLB of the POWER8
processor is not required to be invalidated on a partition swap. Instead, the
TLB entries can persist across partition swapping, so that if a partition is
swapped back again, some of its translation entries are likely to be found in
the TLB.

Additionally, the POWER8 processor introduces a “partition prefetch”
capability, which restores the cache state when a partition is swapped back
into a processor core.

The POWER8 processor allows dynamic SMT mode switches among the
various ST and SMT modes. The core supports the execution of up to eight
hardware architected threads, named T0 through T7.

Unlike the POWER7 core, where the ST mode required the thread to run on
the T0 position, in the POWER8 core the single thread can run anywhere
from T0 to T7. As long as it is the only thread running, the core can execute in
ST mode.

Similarly, as long as only two threads are running, the core can execute in
SMT2 mode, and it does not matter which hardware thread positions those
two threads are running.

This makes the SMT mode switch in the POWER8 core significantly easier and
does not require software to invoke an expensive thread move operation to
put the thread(s) in the right position to switch into the desired SMT mode.

In addition, the performance difference of running one single thread on the
core when the core is in ST mode versus in any of the SMT modes is
significantly lower in the POWER8 processor than in the POWER7 processor.

Figure 2 shows the instruction flow in POWER8 processor core.

Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.

Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.

Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.

Most instructions (except for branches and condition register logical
instructions) are processed through the Unified Issue Queue (UniQueue),
which consists of two symmetric halves (UQ0 and UQ1).

There are also two copies (not shown) of the general-purpose (GPR0 and
GPR1) and vector-scalar (VSR0 and VSR1) physical register files. One copy is
used by instructions processed through UQ0 while the other copy is for
instructions processed through UQ1.

There are also two copies (not shown) of the general-purpose (GPR0 and
GPR1) and vector-scalar (VSR0 and VSR1) physical register files. One copy is
used by instructions processed through UQ0 while the other copy is for
instructions processed through UQ1.

The fixed-point, floating-point, vector, load and load-store pipelines are
similarly split into two sets (FX0, FP0, VSX0, VMX0, L0, LS0 in one set, and
FX1, FP1, VSX1, VMX1, L1, LS1 in the other set) and each set is associated
with one UniQueue half.

Which issue queue, physical register file, and functional unit are used by a
given instruction depends on the simultaneous multi-threading mode of the
processor core at run time.

In ST mode, the two physical copies of the GPR and VSR have identical
contents. Instructions from the thread can be dispatched to either one of the
UniQueue halves (UQ0 or UQ1). Load balance across the two UniQueue
halves is maintained by dispatching alternate instructions of a given type to
alternating UniQueue halves.

In the SMT modes (SMT2, SMT4, SMT8), the two copies of the GPR and VSR
have different contents. The threads are split into two thread sets and each
thread set is restricted to using only one UniQueue half and associated
registers and execution pipelines.

Fixed-point, floating-point, vector and load/store instructions from even
threads (T0, T2, T4, T6) can only be placed in UQ0, can only access GPR0 and
VSR0, and can only be issued to FX0, LS0, L0, FP0, VSX0, and VMX0 pipelines.

Fixed-point, floating-point, vector and load/store instructions from odd
threads (T1, T3, T5, T7) can only be placed in UQ1, can only access GPR1 and
VSR1, and can only be issued to FX1, LS1, L1, FP1, VSX1, and VMX1 pipelines.

Cryptographic and decimal floating-point instructions from a thread can only
be placed in the corresponding UniQueue half, but since there is only one
instance of each of these units, all instructions are issued to the same unit.

Branches and condition register logical instructions have their own dedicated
issue queues and execution pipelines, which are shared by all threads.

Figure 1 shows the POWER8 core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-point
unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.

Instruction Fetch Unit (IFU)

Instruction Fetch Unit

The Instruction Fetch Unit (IFU) in the POWER8 processor (POWER8 IFU) is
responsible for feeding the rest of the instruction pipeline with the most likely
stream of instructions from each active hardware thread.

It uses branch prediction mechanisms to produce this stream well ahead of
the point of execution of the latest committed instruction.

The IFU is also responsible for maintaining a balance of instruction execution
rates from the active threads using software-specified thread priorities,
decoding and forming groups of instructions for the rest of the instruction
pipeline, and executing branch instructions.

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

Instruction Fetch Unit (continued)

The POWER8 IFU has several new features relative to the POWER7 processor
IFU. Support for SMT8 and additional concurrent LPARs (logical partitions)
required changes in sizes for many resources in the IFU.

In addition, the following changes were made to improve the overall
performance of the POWER8 core:

First, instruction cache alignment improvements result in a higher average
number of instructions fetched per fetch operation.

Second, branch prediction mechanism improvements result in more accurate
target and direction predictions.

Third, group formation improvements allow more instructions per dispatch
group, on average.

Fourth, instruction address translation hit rates were improved.

Fifth, instruction fusion is used to improve performance of certain common
instruction sequences.

Finally, better pipeline hazard avoidance mechanisms reduce pipeline
flushes.

Instruction fetching and pre-decoding

Fast instruction address translation for instruction fetch is supported by a fully
associative 64-entry Instruction Effective to Real Address translation Table
(IERAT). The IERAT is shared among all threads.

The IERAT directly supports 4 KB, 64 KB, and 16 MB page sizes. Other page
sizes are supported by storing entries with the next smaller supported page
size.

The IFU reads instructions into the I-cache from the L2 unified cache. Each
read request for instructions from the L2 returns four sectors of 32 bytes
each.

These reads are either demand loads that result from I-cache misses or
instruction pre-fetches. For each demand load request, the pre-fetch engine
initiates additional pre-fetches for sequential cache lines following the
demand load.

Demand and pre-fetch requests are made for all instruction threads
independently, and instructions may return in any order, including
interleaving of sectors for different cache lines.

Up to eight instruction read requests can be outstanding from the core to the
L2 cache.

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

Instruction fetching and pre-decoding

Instruction prefetching is supported in ST, SMT2, and SMT4 modes only.

Up to three sequential lines are pre-fetched in ST mode and one sequential
line per thread in SMT2 and SMT4 modes.

There is no instruction prefetching in SMT8 mode to save on memory
bandwidth.

Pre-fetches are not guaranteed to be fetched and depending on the
congestion in the POWER8 processor nest, some pre-fetches may be
dropped.

…

When there are multiple partitions running on the same core (as in the “split
core mode” discussed in the Introduction) the fetch cycles are divided equally
between the partitions.

If one of the partitions does not have any threads that are ready to fetch, its
fetch cycles are relinquished to the next partition that has threads that are
ready to fetch.

Group formation (of instructions)

Fetched instructions are processed by the branch scan logic and are also
stored in the instruction buffers (IBUF) for group formation.

The IBUF can hold up to 32 entries, each four instructions wide.

Each thread can have four entries in SMT8 mode, eight entries in SMT4
mode and 16 entries in SMT2 and ST modes.

Instructions are retrieved from the IBUF and collected into groups.

Thread priority logic selects one group of up to six non-branch and two
branch instructions in ST mode or two groups (from two different threads)
of up to three non-branch and one branch instructions in SMT modes per
cycle for group formation.

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

Instruction decode -- after group formation (of instructions)

After group formation, the instructions are either decoded or routed to
microcode hardware that breaks complex instructions into a series of simple
internal operations.

Simple instructions are decoded and sent to dispatch.

Complex instructions that can be handled by two or three simple internal
operations are cracked into multiple dispatch slots.

Complex instructions requiring more than three simple internal operations
are handled in the microcode engine using a series of simple internal
operations.

The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)

Figure 1 shows the POWER8 core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.

Instruction Sequencing Unit (ISU)

Figure 5 illustrates the logical flow of instructions in the ISU.

The Instruction Sequencing Unit (ISU) dispatches instructions to the various
issue queues, renames registers in support of out-of-order execution, issues
instructions from the various issues queues to the execution pipelines,
completes executing instructions, and handles exception conditions.

Instruction Sequencing Unit (ISU) (continued)

The POWER8 processor dispatches instructions on a group basis.

In ST mode, it can dispatch a group of up to eight instructions per cycle.

In SMT mode, it can dispatch two groups per cycle from two different
threads and each group can have up to four instructions.

All resources such as the renaming registers and various queue entries must
be available for the instructions in a group before the group can be
dispatched.

Otherwise, the group will be held at the dispatch stage.

An instruction group to be dispatched can have at most two branch and six
non-branch instructions from the same thread in ST mode. If there is a
second branch, it will be the last instruction in the group.

In SMT mode, each dispatch group can have at most one branch and three
non-branch instructions.

Figure 5 illustrates the logical flow of instructions in the ISU.

Figure 5 illustrates the logical flow of instructions in the ISU.

ISU (and the) Global Completion Table (GCT)

The ISU employs a Global Completion Table (GCT) to track all in-flight
instructions after dispatch. The GCT has 28 entries that are dynamically
shared by all active threads.

In ST mode, each GCT entry corresponds to one group of instructions.

In SMT modes, each GCT entry can contain up to two dispatch groups, both
from the same thread.

This allows the GCT to track a maximum of 224 in-flight instructions after
dispatch.

Figure 5 illustrates the logical flow of instructions in the ISU.

Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.

ISU (and the) Global Completion Table (GCT) (continued)

Each GCT entry contains finish bits for each instruction in the group. At
dispatch, the finish bits are set to reflect the valid instructions.

Instructions are issued out of order and executed speculatively.

When an instruction has executed successfully (without a reject), it is marked
as “finished.”

When all the instructions in a group are marked “finished,” and the group is
the oldest for a given thread, the group can “complete.”

When a group completes, the results of all its instructions are made
architecturally visible and the resources held by its instructions are released.

ISU (and the) Global Completion Table (GCT) (continued)

In ST mode, only one group, consisting of up to eight instructions, can
complete per cycle.

In SMT modes, the POWER8 core can complete one group per thread set per
cycle, for a maximum total of two group completions per cycle.

When a group is completed, a completion group tag (GTAG) is broadcast so
that resources associated with the completing group can be released and
reused by new instructions.

The missing tuning factor: ST/SMT-2/-4/-8 threading mode

• We’ve been watching the AIX:vmstat –IWw 1:cpu:pc|:ec values

The missing tuning factor: ST/SMT-2/-4/-8 threading mode

• The :pc|:ec values tell us how much CPU is used and the ec%, or CPUbusy%

• Next, it is clear the POWER8 core has markedly improved threading capability

• Perhaps now we should begin working with the missing tuning factor too, and
not just use the :pc|:ec values to monitor CPU utilization

The missing tuning factor: ST/SMT-2/-4/-8 threading mode

• We should begin tuning POWER8 with more attention to its innate capability

• Tuning POWER8 by :pc and :ec% values alone is missing a deeper dimension

• We should begin controlling an ignored factor; I will call it “SMT threadedness”

• Too often I find workloads barely able to a keep a thread active on a core

• A POWER core can show great productivity -- but only if we push it harder

• Do we agree that compelling more work from our investment is a good thing?

• Do you want to see what I mean? Sure, no problem.

• What can you distinguish between the top and bottom on the next slide?

AIX:vmstat –IWw 1: Which is more CPUcore efficient?

Single Threading mode (ST)

• A hard ST mode (AIX:smtctl –t 1) is not the same as a soft ST mode

• A hard ST mode (AIX:smtctl –t 1) cannot progress to SMT-2/-4/-8 on its own

• A soft ST mode may only be achieved with a hard SMT-2/-4/-8 mode setting
(whether by default AIX:smtctl –t 4 or a hard AIX:smtctl –t 2|8)

• A soft ST mode may progress to SMT-2/-4/-8 when needed

• A soft ST mode is unfortunately universal and virtually the default standard

• A soft ST mode is rooted in configuring too many virtual CPUs for SPLPARs

• A soft ST mode is also rooted in configuring too many dedicated CPU cores

• But, when a soft ST mode is needed, it is the fastest AND the most wasteful

Single Threading mode (ST)

• ST mode offers the most responsiveness/attention/dedication when ec<=100

• This paper shows that optimally “feeding” the CPUcore is the main goal

• Devoting a CPUcore to a single thread means “feeding the CPUcore with all
possible fury”

• ST mode ensures the most instructions and data possible are prefetched,
fetched, loaded/stored, decoded, grouped, dispatched, executed, completed
per cycle – but only for one thread

• In ST mode, the dispatched instructions are executed/balanced between both
sets of 8 + 8 execution pipelines of the core

• ST mode is most appropriate for workloads with fewer threads that are
compute-intensive, not IO dependent, and have sustained activity durations

• ST mode is also most appropriate for workloads with immediate response-
time demands at the expense of wasted/idle CPUcycles

• Most enterprise workloads do not need the dedication of ST mode on POWER8

• Optional for study: Set AIX:schedo:vpm_throughput_mode=1 (default=0)

Simultaneous Multi Threading mode (SMT-2)

• A hard SMT-2 mode (AIX:smtctl –t 2) is not the same as a soft SMT-2 mode

• A hard SMT-2 mode (AIX:smtctl –t 2) cannot progress to SMT-4/-8 on its own

• A soft SMT-2 mode may only be achieved with a hard SMT-4/SMT-8 mode
setting (whether by default AIX:smtctl –t 4 or a hard AIX:smtctl –t 8)

• A soft SMT-2 mode may progress to SMT-4/-8 when needed

• A soft SMT-2 mode should be the standard threading model for POWER8/AIX
workloads not needing the dedicated attention of ST mode

• A soft SMT-2 mode should be the standard threading model for POWER8/AIX
workloads not needing a dedicated CPU LPAR implementation

• A soft SMT-2 mode has a better balance of CPUcore utilization & performance

• A soft SMT-2 mode workload is easily monitored, i.e. AIX:mpstat –w 2

Simultaneous Multi Threading mode (SMT-2)

• But how do we ensure/implement an optimal soft SMT-2 mode?

• First, establish a higher SMT-4/SMT-8 mode “thread count” overflow capability

• Accept the default hard SMT-4 mode, or set a hard SMT-8 mode (smtctl –t 8)

• Next monitor AIX:mpstat –w 2 and learn to identify the real-time threadedness

• If in soft ST mode, remove a virtual CPU and monitor; repeat as needed

• If in any SMT-4 mode, add a virtual CPU and monitor; repeat as needed

• Alternatively, study and implement the more sophisticated tactic, i.e. schedo

• Dynamically set AIX:schedo:vpm_throughput_mode=2 (default=0)

• For workloads not needing a soft ST mode for unfettered performance, a soft
SMT-2 mode is confidently acceptable for POWER8/AIX production service

Simultaneous Multi Threading mode (SMT-4)

• What about purposely tuning to use a soft SMT-4 mode? Is it ever useful?

• Yes, and more so for LPARs configured with two or more virtual CPUs

• A soft SMT-4 mode is subjectively applicable for any nonproduction workload

• Next, some (if not most) batch workloads are more throughput-focused overall,
and do not require the per-thread responsiveness of soft ST/SMT-2 mode

• Also, some workloads have a high concurrent count of very short duration
threads that rapidly-repeatedly do virtually nothing as they quickly jump
on&off CPUcores; confirm w/sustained 20:1 ratio of AIX:mpstat –w 2:cs to :ics

• Finally, to exploit full utilization of limited software licenses, a soft SMT-4 mode
will ensure every available atom of productivity is extracted per licensed core

• For any of the use-cases above, execute AIX:smtctl –t 8, then study and
dynamically set AIX:schedo:vpm_throughput_mode=4 (default=0)

Simultaneous Multi Threading mode (SMT-8)

• What about tuning to use a hard SMT-8 mode? Is it ever useful?

• Yes, it is specifically useful for setting a soft SMT-4 mode in the slide above

• There is no hard SMT-16 mode, so a soft SMT-8 mode cannot be set

• There are likely amazing applications perfect for hard SMT-8 mode – but given
my POWER8/AIX enterprise focus, I haven’t run across them yet

• Most enterprise workloads do not have enough concurrently running threads
to achieve a natural SMT-8 thread density; when attempted, they are typically
holding at a steady SMT-4 thread density

• Of course, a hard SMT-8 mode can be forced by explicit directive

• This directive is setting AIX:schedo:vpm_throughput_mode=8 (default=0)

Figure 1 shows the POWER8 core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.

Load/Store Unit (LSU)

Figure 6 illustrates the microarchitecture of the POWER8 LS0 pipeline.

The Load/Store Unit (LSU) is responsible for executing all the load and store
instructions, managing the interface of the core with the rest of the systems
through the unified L2 cache and the Non-Cacheable Unit (NCU), and
implementing address translation as specified in the Power ISA.

Load/Store Unit (LSU) (continued)

The POWER8 LSU contains two symmetric load pipelines (L0 and L1) and two
symmetric load/store pipelines (LS0 and LS1).

Each of the LS0 and LS1 pipelines are capable of executing a load or a store
operation in a cycle. Furthermore, each of L0 and L1 pipelines are capable of
executing a load operation in a cycle.

In addition, simple fixed-point operations can also be executed in each of the
four pipelines in the LSU, with a latency of three cycles.

In ST mode, a given load/store instruction can execute in any appropriate
pipeline: LS0, LS1, L0 and L1 for loads, LS0 and LS1 for stores.

In SMT2, SMT4, and SMT8 mode, instructions from half of the threads
execute in pipelines LS0 and L0, while instructions from the other half of the
threads execute in pipelines LS1 and L1.

Instructions are issued to the load/store unit out-of-order, with a bias
towards the oldest instructions first.

Stores are issued twice; an address generation operation is issued to the LS0
or LS1 pipeline, while a data operation to retrieve the contents of the register
being stored is issued to the L0 or L1 pipeline.

The LSU must ensure the effect of architectural program order of execution of
the load and store instructions, even though the instructions can be issued
and executed out-of-order.

To achieve that, the LSU employs two main queues: the store reorder queue
(SRQ) and the load reorder queue (LRQ).

ISU Address Translation

In the Power ISA, programs execute in a 64-bit effective addresses space. (A
32-bit operating mode supports the execution of programs with 32-bit
general purpose registers and 32-bit effective addresses.)

During program execution, 64-bit effective addresses are translated by the
first level translation into 50-bit real addresses that are used for all addressing
in the cache and memory subsystem.

The first level translation consists of a primary Data Effective-to-Real Address
Translation (DERAT), a secondary DERAT, and an Instruction Effective-to-Real
Address Translation (IERAT).

When a data reference misses the primary DERAT, it looks up the address
translation in the secondary DERAT. If the translation is found in the
secondary DERAT, it is then loaded into the primary DERAT.

ISU Address Translation (continued)

If the translation is not found in either the primary or the secondary DERAT,
the second-level translation process is invoked to generate the translation.

When an instruction reference misses the IERAT, the second-level translation
is also invoked to generate the translation.

The second-level translation consists of a per-thread Segment Lookaside
Buffer (SLB) and a Translation Lookaside Buffer (TLB) that is shared by all
active threads.

ISU Address Translation (continued)

Effective addresses are first translated into 78-bit virtual addresses using the
segment table and the 78-bit virtual addresses are then translated into 50-bit
real addresses using the page frame table.

While the architected segment and page frame tables are large and reside in
main memory, the SLB and TLB serve as caches of the recently used entries
from the segment table and page frame table, respectively.

The POWER8 processor supports two segment sizes, 256 MB and 1 TB, and
four page sizes: 4 KB, 64 KB, 16 MB, and 16 GB.

ISU Address Translation (continued)

The primary Data Effective-to-Real Address Translation (DERAT) is a 48-entry,
fully-associative, Content Addressed Memory (CAM) based cache. Physically,
there are four identical copies of the primary DERAT, associated with the two
load/store pipelines and two load pipelines.

In ST mode, the four copies of the primary DERAT are kept synchronized with
identical contents. So, in ST mode, logically there are a total of 48 entries
available.

In the SMT modes, two synchronized primary DERATs (in LS0 and L0 pipes)
contain translation entries for half of the active threads while the two other
synchronized primary DERATs (in LS1 and L1 pipes) contain translation entries
for the other half of the active threads.

In the SMT modes, the first two paired primary DERATs contain addresses
that can be different from the other two paired primary DERATs, for a total
of 96 logical entries.

ISU Address Translation (continued)

Each Primary DERAT entry translates either 4 KB, 64 KB, or 16 MB pages. The
16 GB pages are broken into 16 MB pages in the primary DERAT.

The primary DERAT employs a binary tree Least Recently Used (LRU)
replacement policy.

The secondary DERAT is a 256-entry, fully associative, CAM-based cache.

In single thread mode, all 256 entries are available for that thread.

In SMT mode, the secondary DERAT is treated as two 128-entry arrays, one
for each thread set.

The secondary DERAT replacement policy is a simple First-In First-Out (FIFO)
scheme.

ISU Address Translation (continued)

The SLB is a 32-entry-per-thread, fully associative, CAM-based buffer.

Each SLB entry can support 256 MB or 1 TB segment sizes.

The Multiple Pages Per Segment (MPSS) extension of Power ISA is supported
in the POWER8 processor. With MPSS, a segment with a base page size of 4
KB can have 4 KB, 64 KB, and 16 MB pages concurrently present in the
segment.

For a segment with a base page size of 64 KB, pages of size 64 KB and 16 MB
are allowed concurrently.

The SLB is managed by supervisor code, with the processor generating a data
or instruction segment interrupt when an SLB entry needed for translation is
not found.

ISU Address Translation (continued)

The Translation Lookaside Buffer (TLB) is a 2,048-entry, 4-way set associative
buffer.

The TLB is managed by hardware, and employs a true LRU replacement policy.

A miss in the TLB causes a table-walk operation, by which the TLB is reloaded
from the page frame table in memory.

There can be up to four concurrent outstanding table-walks for TLB misses.

The TLB also provides a hit-under-miss function, where the TLB can be
accessed and return translation information to the DERAT while a table-walk
is in progress.

• Tight&Fat: Configure fewer vCPUs, grant 0.7-0.9 eCPU per vCPU, and drive
the core-level harder with SMT-2/4/8 thread-level workloads on POWER8.

• Tight&Fat aims to preclude use of “UnCapped” shared-CPU capacity

• Tight&Fat aims to avoid running beyond CPU Entitlement, i.e. ec>100

• Tight&Fat aims to keep vCPUs on their Home cores for the hottest TLB hits

• Tight&Fat means vCPUs do not visit strange CPUcores with no TLB content

ISU Address Translation (continued)

In the POWER8 LSU, each TLB entry is tagged with the LPAR (logical partition)
identity.

For a TLB hit, the LPAR identity of the TLB entry must match the LPAR identity
of the active partition running on the core.

When a partition is swapped in, there is no need to explicitly invalidate the
TLB entries.

If a swapped-in partition has run previously on the same core, there is a
chance that some of its TLB entries are still available which reduces TLB
misses and improves performance.

Data prefetch

The purpose of the data prefetch mechanism is to reduce the negative
performance impact of memory latencies, particularly for technical
workloads.

These programs often access memory in regular, sequential patterns. Their
working sets are also so large that they often do not fit into the cache
hierarchy used in the POWER8 processor.

Designed into the load-store unit, the prefetch engine can recognize streams
of sequentially increasing or decreasing accesses to adjacent cache lines and
then request anticipated lines from more distant levels of the cache/memory
hierarchy.

The usefulness of these prefetches is reinforced as repeated demand
references are made along such a path or stream.

The depth of prefetch is then increased until enough lines are being brought
into the L1, L2, and L3 caches so that much or all of the load latency can be
hidden.

The most urgently needed lines are prefetched into the nearest cache levels.

Data prefetch (continued)

During stream start up, several lines ahead of the current demand reference
can be requested from the memory subsystem.

After steady state is achieved, each stream confirmation causes the engine to
bring one additional line into the L1 cache, one additional line into the L2
cache, and one additional line into the L3 cache.

To effectively hide the latency of the memory access while minimizing the
potentially detrimental effects of prefetching such as cache pollution, the
requests are staged such that the line that is being brought into the L3 cache
is typically several lines ahead of the one being brought into the L1 cache.

Because the L3 cache is much larger than the L1 cache, it can tolerate the
most speculative requests more easily than the L1 cache can.

Figure 1 shows the POWER8 core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar
unit (VSU) and decimal floating point
unit (DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.

Fixed-Point Unit (FXU)

Fixed-Point Unit (FXU)

The Fixed-Point Unit (FXU) is composed of two identical pipelines (FX0 and
FX1).

Fixed-Point Unit (FXU) (continued)

As shown in Figure 7, each FXU pipeline consists of:

• a multiport General Purpose Register (GPR) file

• an arithmetic and logic unit (ALU) to execute add, subtract, compares and
trap instructions

• a rotator (ROT) to execute rotate, shift and select instructions

• a count unit (CNT) to execute count leading zeros instruction

• a bit select unit (BSU) to execute bit permute instruction

• a miscellaneous execution unit (MXU) to execute population count, parity
and binary-coded decimal assist instructions

• a multiplier (MUL)

• and a divider (DIV)

Fixed-Point Unit (FXU) (continued)

Certain resources such as the Software Architected Register file (SAR) and
Fixed-Point Exception Register (XER) file are shared between the two
pipelines.

The most frequent fixed-point instructions are executed in one cycle and
dependent operations may issue back to back to the same pipeline, if they are
dispatched to the same UniQueue half (otherwise, a one-cycle bubble is
introduced).

Other instructions may take two, four, or a variable number of cycles.

Figure 1 shows the POWER8 core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-point
unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.

Vector-and-Scalar Unit (VSU)/Decimal Floating Point Unit (DFU)

The POWER8 processor Vector-and-Scalar Unit (VSU), shown in Figure 8,
has been completely redesigned from its initial implementation in the
POWER7 processor to support the growing computation and memory
bandwidth requirements of business analytics and big data applications.

The POWER8 VSU now supports dual issue of all scalar and vector
instructions of the Power ISA.

Vector-and-Scalar Unit (VSU) (continued)

Further improvements include:

• a two-cycle VMX/VSX Permute (PM) pipeline latency

• doubling of the store bandwidth to two 16-byte vectors/cycle to match the
32-byte/cycle load bandwidth

• execution of all floating-point compare instructions using the two-cycle
Simple Unit (XS) pipeline to speedup branch execution

The total number of 1,024 16-byte VSX registers is implemented as a two-
level register space.

The second level, namely the Software Architected Registers (SAR), maintains
all 64 architected VSX registers plus up to 64 TM checkpointed registers per
thread.

Vector-and-Scalar Unit (VSU) (continued)

Two copies of a 144-entry vector register file (VRF), one associated with each
UniQueue, constitute the first level register space.

Each VRF contains up to 64 recently used architected registers and up to 80
in-flight rename registers shared across all threads in the corresponding
UniQueue half.

In ST mode, the contents of both VRFs are kept synchronized.

When running in SMT modes, the two VSU issue ports and VRFs work
separately, thereby doubling the number of in-flight copies of architected
and rename registers.

The SAR space always appears as shared resource of the nine ports and all
eight threads allowing for dynamic movement of threads or alternation of
ST/SMT mode.

Vector-and-Scalar Unit (VSU) (continued)

The VSU features a large number of new instructions and architectural
refinements for applications like business analytics, big data, string
processing, and security.

The VSX pipelines now supports 2-way 64-bit vector and 128-bit scalar integer
data types and new direct GPR-to/from-VSR move operations that provide a
fixed-latency and high bandwidth data exchange between the vector and
general purpose registers.

The added VMX crypto instruction set is targeted towards AES, SHA2 and
CRC computations and several instructions have been promoted into VSX to
gain access to all 64 architected vector registers.

Decimal Floating Point Unit (DFU)

The Decimal Floating Point Unit (DFU) in the POWER8 core allows fully
pipelined execution of the Power ISA “Decimal Floating Point” instructions.

The DFU attachment has greatly been improved to provide symmetrical,
conflict-free access from both UniQueue ports, resulting in more predictable
execution latencies.

The issue-to-issue latency is 13 cycles for dependent instructions.

The DFU is IEEE 754-2008 compliant and includes native support for signed
decimal fixed-point add and fixed-point subtract with an operand length of up
to 31 decimal digits, which speeds up the execution of business analytics
applications such as DB2 BLU.

VSU and DFU

The new VSU microarchitecture doubles the number of VSX/VMX simple
integer and permute units, supports many new instructions, adds a new
crypto engine and greatly improves attachment of the redesigned DFU
pipeline.

With all these enhancements, the overall performance for many of the new
computational intensive workloads is greatly improved in the POWER8
processor.

Summary and Conclusion

The POWER8 processor continues the tradition of innovation in the POWER
line of processors.

In addition to being the best-of-breed design for IBM’s commercial workloads,
the POWER8 processor design is also targeted for big data, analytics, and
cloud application environments and provides the highest performance design
in the industry.

The POWER8 core is designed with high throughput performance in mind and
supports eight powerful threads per core.

For many commercial workloads, each POWER8 core can provide about 1.5
times more single thread performance and twice the throughput
performance over a POWER7 core.

Summary and Conclusion

…

For many commercial workloads, each POWER8 core can provide about 1.5
times more single thread performance and twice the throughput
performance over a POWER7 core.

Today, with an established history of high-performance success, POWER8 has
proved it “can provide about 1.5 times more single thread performance and
twice the throughput performance over a POWER7 core.”

So much so, the nature of my work with performance-tuning POWER8/AIX
workloads is substantially different from POWER5/6/7. Bluntly, it runs so fast,
it covers for a host of past indiscretions.

No matter, there will always be new indiscretions. The enterprise will soon
evolve and grow workloads to tax even POWER8’s amazing capabilities.

Thank You

Prepared and Edited by Earl Jew (not Prepared and Edited by Earl Jew (not Prepared and Edited by Earl Jew (not Prepared and Edited by Earl Jew (not an an an an author of the whitepaper)author of the whitepaper)author of the whitepaper)author of the whitepaper)
earlj@us.ibm.comearlj@us.ibm.comearlj@us.ibm.comearlj@us.ibm.com; (310) 251; (310) 251; (310) 251; (310) 251----2907; Los Angeles, California, USA2907; Los Angeles, California, USA2907; Los Angeles, California, USA2907; Los Angeles, California, USA
Senior IT Consultant for IBM Power Systems and System StorageSenior IT Consultant for IBM Power Systems and System StorageSenior IT Consultant for IBM Power Systems and System StorageSenior IT Consultant for IBM Power Systems and System Storage
IBM STG Lab Services Power Systems Delivery PracticeIBM STG Lab Services Power Systems Delivery PracticeIBM STG Lab Services Power Systems Delivery PracticeIBM STG Lab Services Power Systems Delivery Practice

Balaram Sinharoy (an author of the whitepaper)

IBM Systems and Technology Group, Poughkeepsie, NY 12601 USA
(balaram@us.ibm.com).

Dr. Sinharoy is an IBM Fellow and the chief architect of the IBM POWER8
processor. Before his work on the POWER8 processor, he was the Chief
Architect for the IBM POWER5 and POWER7 processors.

Dr. Sinharoy has published numerous articles and authored approximately
135 issued or pending patents in many areas of computer architecture. Dr.
Sinharoy also received several IBM Corporate Awards for his work in different
generations of the IBM POWER processor.

He is an IBM Master Inventor and an IEEE (Institute of Electrical and
Electronics Engineers) Fellow.

James A. Van Norstrand (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(njvan@us.ibm.com).

Mr. Van Norstrand is a Distinguished Engineer in the IBM POWER
development team.

He graduated from Syracuse University in 1982 with a B.S.E.E. degree. He was
the unit lead for the Instruction Fetch Unit on POWER7.

Before POWER7, he was the core lead for the Cell Broadband Engine** chip,
POWER4 lab manager, and IBM z System* designer for the IFU.

Richard J. Eickemeyer (an author of the whitepaper)

IBM Systems and Technology Group, Rochester, MN 55901 USA
(eick@us.ibm.com).

Dr. Eickemeyer received a B.S. degree in electrical engineering from Purdue
University and M.S. and Ph.D. degrees from the University of Illinois at
Urbana-Champaign.

He is currently a Senior Technical Staff Member at IBM Corporation in
Rochester, Minnesota, where he is the processor core performance team
leader for IBM POWER servers and is working on future processor designs.

Previously, he has worked on several different processor designs. His research
interests are computer architecture and performance analysis. He has
authored many papers and has been awarded 40 U.S. patents with others
pending.

He has been named an IBM Master Inventor. He has received several IBM
awards including two IBM Corporate Awards.

Hung Q. Le (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(hung@us.ibm.com).

Mr. Le is an IBM Fellow in the POWER development team of the Systems and
Technology Group. He joined IBM in 1979 after graduating from Clarkson
University with a B.S. degree in electrical and computer engineering.

He worked on the development of several IBM mainframe and
POWER/PowerPC* processors and has been contributing to the technical
advancement of IBM processor technology such as advanced high-frequency
out-of-order instruction processing, simultaneous multithreading, and
transactional memory.

He led the POWER8 chip development and is developing the
microarchitecture of the next Power processor. He holds more than 100 U.S.
patents.

Jens Leenstra (an author of the whitepaper)

IBM Systems and Technology Group, Boeblingen DE 71032 Germany
(leenstra@de.ibm.com).

Mr. Leenstra is an IBM Senior Technical Staff Member and the lead for the
IBM POWER7 and POWER8 VSU.

He worked on the design and verification of I/O chips, multiprocessor system
verification of the IBM S/390* G2 and G3 mainframe computers, the Cell
Broadband Engine processor SPEs (synergistic processor elements), and
POWER6 processor VMX unit.

He has 30 issued patents and is an IBM Master Inventor.

Dung Q. Nguyen (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(dqnguyen@us.ibm.com)

Mr. Nguyen is a Senior Engineer in the POWER development team of the
Systems and Technology Group.

He joined IBM in 1986 after graduating from the University of Michigan with
an M.S. degree in materials engineering. He has worked on the development
of many processors, including POWER3 through POWER8 processors.

He is currently the unit lead for the Instruction Sequencing Unit on future
POWER microprocessors.

He has more than 80 issued patents and is an IBM Master Inventor.

Brian Konigsburg (an author of the whitepaper)

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 USA (brk@us.ibm.com)

Mr. Konigsburg earned a B.S.E.E. and a B.S.C.S. degree from the University of
Florida.

He is a Senior Technical Staff Member in IBM Research in the Design
Automation area.

He joined IBM in 1995 and has worked on several IBM POWER and IBM
mainframe processor development teams as a processor core unit lead
including instruction, load/store, and floating point units.

He was also the performance lead for POWER7 and POWER8 processors.

Mr. Konigsburg holds numerous patents in the area of instruction fetch and
out-of-order instruction processing.

Kenneth Ward (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(wardk@us.ibm.com).

Mr. Ward earned a B.S. degree in mathematics and an M.S. degree in
electrical engineering from the University of Florida.

He is a Senior Engineer in the POWER development team of the Systems and
Technology Group.

He joined IBM in 1989 and has held a variety of positions in systems
integration, systems development, card design, and processor development.
He has worked in the areas of POWER5 Elastic I/O, POWER6 core recovery,
POWER7 nest fabric, and recently as the unit lead for the POWER8 Fixed Point
Unit (FXU).

He is currently working on the POWER9 completion and flush
implementation.

Mary D. Brown (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA.

Dr. Brown received her B.S. degree in computer science from Florida State
University, her M.S. degree in computer science and engineering from the
University of Michigan, and her Ph.D. degree in computer engineering from
the University of Texas at Austin.

She started working at IBM in 2005 as a logic designer for the ISU for
POWER7.

On POWER8, she was the issue queue lead, and she was the Instruction Fetch
Unit Lead starting in 2013.

Jose´ E. Moreira (an author of the whitepaper)

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 USA (jmoreira@us. ibm.com).

Dr. Moreira is a Distinguished Research Staff Member in the Commercial
Systems department at the IBM T. J. Watson Research Center.

He received a B.S. degree in physics and B.S. and M.S. degrees in electrical
engineering from the University of Sao Paulo, Brazil, in 1987, 1988, and 1990,
respectively. He also received a Ph.D. degree in electrical engineering from
the University of Illinois at Urbana-Champaign in 1995.

Since joining IBM at the T. J. Watson Research Center, he has worked on a
variety of high-performance computing projects. He was system software
architect for the Blue Gene*/L supercomputer, for which he received an IBM
Corporate Award, and chief architect of the Commercial Scale Out project.

He currently leads IBM Research work on the architecture of Power processor.
He is author or coauthor of over 100 technical papers and ten patents.

Dr. Moreira is a member of the Institute of Electrical and Electronics Engineers
(IEEE) and a Distinguished Scientist of the Association for Computing
Machinery (ACM).

David Levitan (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78750 USA
(levitan@us.ibm.com).

Mr. Levitan received his bachelor’s degree in electrical engineering from
McGill University in 1981, and his master’s degree in computer engineering
from Syracuse University in 1987.

He is Senior Engineer and a Master Inventor who has reached the sixteenth
invention achievement plateau at IBM. Mr. Levitan started work at IBM in
Poughkeepsie, New York, in 1981.

From 1981 until 1987, he worked in system simulation on various 3090
processors, and then from 1987 until 1990, he worked in the System
Assurance Kernel Group.

From 1990 until the present, Mr. Levitan has worked in PowerPC
microprocessor development on various PowerPC microprocessors.

Steve Tung (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(stung@us.ibm.com).

Mr. Tung is a senior engineer in the POWER development team of the Systems
and Technology Group. He has worked on the development of several
POWER/PowerPC processors, particularly in load and store units.

Mr. Tung received an M.S. degree in computer engineering from Syracuse
University.

David Hrusecky (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(hrusecky@us.ibm.com).

Mr. Hrusecky is an advisory engineer in the POWER development team of the
Systems and Technology Group.

He has worked on core development L1 caches of several POWER processors,
including POWER6, POWER7, and POWER8.

He received a B.S. degree in computer engineering from Rochester Institute of
Technology.

James W. Bishop (an author of the whitepaper)

IBM Systems and Technology Group, Endicott, NY 13760 USA
(bish@us.ibm.com).

Mr. Bishop is a Senior Engineer in the POWER development team of the
Systems and Technology Group.

He joined IBM in 1984 after graduating from the University of Cincinnati with
a B.S. degree in electrical engineering. He subsequently earned an M.S.
degree in computer engineering from Syracuse University in 1993.

While at IBM, he has been a logic designer on memory and processor
subsystems for System/390*, AS/400*, and Power. He has worked on the
development of several POWER processors including POWER6, POWER7, and
POWER8.

Mr. Bishop is the author of 12 technical disclosures and 17 patents.

Michael Gschwind (an author of the whitepaper)

IBM Systems and Technology Group, Poughkeepsie, NY 12601 USA
(mkg@us.ibm.com).

Dr. Gschwind is a Senior Technical Staff Member and Senior Manager of the
Systems Architecture team. In this role, Dr. Gschwind is responsible for the
definition of the Power Systems and mainframe architecture.

Previously, he was Chief Floating-Point Architect and Technical Lead for core
reliability for Blue Gene/Q, was the architecture lead for the PERCS
(Productive, Easy-to-use, Reliable Computing System) project defining the
future POWER7 processor, and had key architecture and microarchitecture
roles for the Cell Broadband Engine, Xbox 360**, and POWER7 processors.

Dr. Gschwind also developed the first Cell compiler and served as technical
lead and architect for the development of the Cell software-development
environment.

Dr. Gschwind has published numerous articles and received about 100
patents in the area of computer architecture. In 2006, Dr. Gschwind was
recognized as IT Innovator and Influencer by ComputerWeek.

Dr. Gschwind is a member of the ACM SIGMICRO Executive Board, a Member
of the IBM Academy of Technology, an IBM Master Inventor, an ACM
Distinguished Speaker, and an IEEE Fellow.

Maarten Boersma (an author of the whitepaper)

IBM Systems and Technology Group, Boeblingen DE 71032 Germany
(mboersma@de.ibm.com).

Mr. Boersma received his M.Sc. degree in electrical engineering from the
University of Twente, the Netherlands.

He joined IBM in 2005 to work on the design of high-performance floating
point units for the PowerXCell* 8i, POWER7, POWER7+, and POWER8
microprocessors.

His focus is on power-efficient design and formal verification techniques.

Michael Kroener (an author of the whitepaper)

IBM Systems and Technology Group, Boeblingen DE 71032 Germany
(mkroener@de.ibm.com).

Mr. Kroener is the lead for the IBM POWER7 and POWER8 DFU unit. Since
1994, he worked in the floating point area, first on IBM mainframe z System
processors and later on POWER6 processor.

He has 26 issued patents.

Markus Kaltenbach (an author of the whitepaper)

IBM Systems and Technology Group, Boeblingen DE 71032 Germany
(kaltenba@de.ibm.com).

Mr. Kaltenbach received his diploma degree in computer science from the
University of Tuebingen, Germany.

Joining IBM in 2005 working on the IBM z10* mainframe processor and
designs for the POWER7 processor, he acts as logic design lead for the
POWER8 VSU unit.

His focus is on microarchitecture, accelerators, synthesis, and timing.

Tejas Karkhanis (an author of the whitepaper)

IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights,
NY 10598 USA (tkarkha@us.ibm. com).

Dr. Karkhanis is a Research Staff Member at the IBM T. J. Watson Research
Center since 2008.

His research interests are in various aspects of enterprise-class and high-
performance class computing systems.

From 2006 to 2008, Dr. Karkhanis worked at Advanced Micro Devices, where
he contributed to consumer-class microprocessors.

Dr. Karkhanis received his B.S., M.S., and Ph.D. degrees in 2000, 2001, and
2006, respectively, all from University of Wisconsin-Madison.

He has filed several patents and authored several papers in top conferences
and journals.

Kimberly M. Fernsler (an author of the whitepaper)

IBM Systems and Technology Group, Austin, TX 78758 USA
(kimfern@us.ibm.com).

Ms. Fernsler is an Advisory Engineer in the POWER development team of the
Systems and Technology Group.

She has worked on the development of several POWER/PowerPC processors,
particularly on load and store units.

Ms. Fernsler joined IBM in 1999 after receiving an M.S. degree in computer
engineering from Carnegie Mellon University.

