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Abstract

The single source shortest path problem for arbitrary directed graphs wibdes,n edges and
nonnegative edge weights can sequentially be solved @ing logn + m) operations. However,
no work-efficient parallel algorithm is known that runs in sublinear time for arbitrary graphs. In
this paper we present a rather simple algorithm for the single source shortest path problem. Our
new algorithm, which we call Delta-stepping, can be implemented very efficiently in sequential
and parallel setting for a large class of graphs. For random edge weights and arbitrary graphs with
maximum node degreg, sequentialA-stepping need®(n + m + d - L) total average-case time,
whereL denotes the maximum shortest path weight from the source ntwlany node reachable
from s. For example, this means linear time on directed graphs with constant maximum degree. Our
best parallel version for a PRAM takéx(d - L - logn + log?n) time andO(n +m +d - L - logn)
work on average. For random graphs, e@qﬂogzn) time andO(n + m) work on average can be
achieved. We also discuss how the algorithm can be adapted to work with nonrandom edge weights
and how it can be implemented on distributed memory machines. Experiments indicate that already
a simple implementation of the algorithm achieves significant speedup on real machines.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The single-source shortest-path problef8SSP) is a fundamental and well-studied
combinatorial optimization problem with many practical and theoretical applications [2].
Numerous SSSP algorithms have been developed, achieving better and better asymptotic
running times. Unfortunately, on parallel machines, fast and efficient SSSP computations
still constitute a major bottleneck. On the other hand, many sequential SSSP algorithms
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with less attractive worst-case behavior perform very well in practice but there are no
theoretical explanations for this phenomenon. In this paper we propose a simple SSSP
algorithm of the above kind that provably runs in linear average time for a large class of
graphs and at the same time allows efficient parallelization.

Let G = (V, E) be a directed graph witi/| = n nodes andE| = m edges, lek be a
distinguished vertex (“source”) of the graph, antle a function assigning a nonnegative
real-valuedwveightto each edge of;. The objective of the SSSP is to compute, for each
vertexv reachable from, the weight of a minimum-weight (“shortest”) path fronto v,
denoted by disk, v), abbreviated digt); the weight of a paths the sum of the weights
of its edges. We set digt, v) := oo if v is unreachable froma. The maximum shortest
path weightfor the source node is defined ad.(s) := max{dist(s, v): dist(s, v) < oo},
abbreviated.. Finally, note the distinction between the weight of a path andite of a
pathwhich is defined to be the number of edges on the path.

Sequential shortest path algorithms commonly apply iterative labeling methods based
on maintaining aentative distancéor all nodes; teriv) is alwaysco or the weight of
some path fromy to v and hence an upper bound on ¢ist Tentative distances are
improved by performingedge relaxationsi.e., for an edgegv, w) € E the algorithm
sets tentw) := min{tent(w), tentv) + c¢(v, w)}. There are two major types of labeling
methods—abel-settingandlabel-correcting Label-setting algorithms, such as Dijkstra’s
algorithm [29] designate the distance label of one node permanent (optimal, “settled”)
at each iteration. Hence, at mostiterations are required. Label-correcting algorithms
can relax edges of nonsettled nodes and may vary in the number of iterations needed to
complete the computation: all labels are considered temporary (they may be considered
several times) until the final step, when they all become permanent. The best label-setting
algorithms have significantly better worst case bounds than that of any label-correcting
algorithm. In spite of good practical performance [17,93], the power of label-correcting
approaches for SSSP is hardly covered by theoretical average-case analysis.

We address the deficit described above by providing a simple sequential label-correcting
algorithm whichprovablyachieves optimal linear time with high probability (wRgpr a
large graph class with random edge weights. @estepping algorithm maintains eligible
nodes with tentative distances in an array of buckets each of which represents a distance
range of sizeA. During each phase, the algorithm removes all nodes of the first nonempty
bucket and relaxes all outgoing edges of weight at mbsEdges of higher weight are
only relaxed after their respective starting nodes are surely settled. The chaichofild
provide a good trade-off between too many node re-considerations on the one hand and
too many bucket traversals on the other hand. We show that takiag? (1/d) for graphs
with maximum node degretandrandomedge weights uniformly distributed [0, 1], the
algorithm need®(n + m + d - L) total average-case time whetedenotes the maximum
shortest path weight from the source nod® any node reachable from For example,
this means linear average-case time on arbitrary directed graphs with bounded constant
degree.

2 With high probability(whp) means that the probability for some event is at least/i# for any constant
B >0.
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Large input sizes require algorithms that efficiently support parallel computing, both
in order to achieve fast execution and to take advantage of the aggregate memory of the
parallel system. The parallel random access machine (PRAM) [36,47,58] is one of the most
widely studied abstract models of a parallel computer. A PRAM consistSradependent
processors (processing units, PUs) and a shared memory, which these processors can
synchronously access in unit time. Most of our parallel algorithms assunerhihteary
CRCW (concurrentread concurrent write) PRAM, i.e., in case of conflicting write accesses
to the same memory cell, an adversary can choose which access is successful. Even though
the strict PRAM model is only implemented on a few experimental parallel machines like
the SB-PRAM [35] it is valuable to highlight the main ideas of a parallel algorithm without
tedious details caused by a particular architecture. Other, more realistic models like BSP
[91] and LogP [23] view a parallel computer as a collection of sequential processors, each
one having its own local memory, so-calldtributed memory machindpMMs). The
PUs are interconnected by a network that allows them to communicate by sending and
receiving messages. Communication constraints are imposed by latency, limited network
bandwidth and synchronization delays. In this article, we use the PRAM model to describe
and analyze the basic structure of our parallel algorithm first, then we provide details of a
conversion to DMMs.

A number of new SSSP algorithms has been invented to fit the needs of parallel
computation models. A fast and efficient parallel algorithm minimizes liotle and
work (product of time and number of processors). Ideally, the work bound matches
the complexity of the best (known) sequential algorithm. Unfortunately, even on the
stronger PRAM model, most of them perform significantly more work than their sequential
counterparts. Currently, there is no work efficient algorithm which achieves sublinear time
on arbitrary graphs with nonnegative edge weights. Implementations on parallel computers
mostly apply some simple kind of graph partitioning, and then each processor runs a
sequential label-correcting algorithm on its own partition. In between, the processors
exchange distance information. For certain input classes, some of these implementations
perform fairly well even though no speed-up can be achieved in the worst case.
However, thorough theoretical justification for the actually observed performance is largely
missing.

Based on the sequential-stepping algorithm we give work-efficient extensions to
PRAMs and distributed memory machines (DMMs). For random edge weights, the
expected parallel execution time can again be stated in terms of the maximum node
degree and the expected maximum weight among all shortest paths in the graph. We
prove sublinear average-case time and linear average-case work for several graph classes
with random edge weights. In particular, we sh6\log? ») time and®(n + m) work on
average for random graphs with random edge weights.

In the following we will provide an outline of previous and related work. Then we will
give an overview of our new algorithms, interpret the theoretical results, and sketch the
organization of the article.
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1.1. Previous and related work

1.1.1. Sequential label-setting algorithms

The basic label-setting approach is Dijkstra’s algorithm [29]. It maintains a partition of
the node seV into settled queuedandunreachedodes. Settled nodes have reached their
final distance value. Queued nodes have finite tentative distance and unreached nodes have
tentv) = oo. Initially, s is queued, terit) = 0, and all other nodes are unreached. In each
iteration, the queued nodewith the smallest tentative distance is removed from the queue,
and all edgesv, w) are relaxed, i.e., te@b) is set to miftent(w), tentv) + c(v, w)}. If
w was unreached, it is now queued. It is well known that (t®nt dist(v) whenv is
removed from the queue, i.@.js settled. Using Fibonacci heaps [37], Dijkstra’s algorithm
can be implemented to run i(n - logn + m) time. This constitutes the best known bound
in the standard model of computation, which forbids bit-manipulations of the edge weights.

A number of faster algorithms have been developed on the more powerful RAM (ran-
dom access machine) model which basically reflects what one can use in a programming
language such &8. Nearly all of these algorithms are based on Dijkstra’s algorithm and
improve the priority queue data structure (see [78,85] for an overview). Thorup [85,86]
has given the firs©O(n 4+ m) time RAM algorithm forundirectedgraphs with nonneg-
ative floating-point or integer edge weights {@, ..., 2" — 1} for word lengthw. His
approach applies label-setting, too, but significantly deviates from Dijkstra’s algorithm
in that it does not visit the nodes in order of increasing distance frdot traverses a
so-calledcomponent treeUnfortunately, Thorup’s algorithm requires atomic heaps [38]
which are only defined for > 212 Hagerup [49] recently generalized Thorup’s approach
to directed graphs, the time complexity, however, remains super-lfiéas m - logw).

The currently fastest RAM algorithm for sparse directed graphs is due to Thorup [87]
and need€)(n + m - loglogn) time. Alternative approaches for somewhat denser graphs
have been proposed by Raman [77,78]: they req@ite: + n - \/logn - loglogn) and

O(m +n - (w - logn)1/3) time, respectively.

Considering the algorithms which we present in this paper we review some basic
implementations of Dijkstra’s algorithm witibucket based priority queues. Bucket
approaches are particularly interesting for smatibgeredge weights i1, ..., C}: inits
simplest form the priority queue consists of a linear arBaguch that buckeB[i] stores
the seffv € V: v is queued and tei) € [i - A, (i +1) - A)}. The parameteA is called the
bucket widthFor integer weights, taking = 1 ensures that any node in the first nonempty
bucket can be settled [26]. The statement remains trueAfer Ag = min{c(e): ¢ € E}
[25,30]. Hence, ifA < Ap, the resulting running time is bounded BYm +n - [C/ A7),
also for noninteger weights frofmig, C]. ChoosingA > Ag either requires to search a
node with smallest tentative distance in the first nonempty bucket (e.g., by an additional
heap [25]) or results in a label-correcting algorithm. The latter variant which is also called
the “approximate bucket implementation of Dijkstra’s algorithm” [2] comes closest to
the sequential version of outi-stepping algorithm. The description in [2] provides a
worst-case analysis fantegerweights, the average-case performance (in particular for
nonintegeredge weights) is not considered.

Alternative bucket approaches include nested (multiple levels) buckets and/or buckets of
different widths [3,25]. The currently best worst-case bound for SSSP on arldtracyed
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graphs with integer edge weights{m, ..., C} is O(m + n - (logC)¥/4+€) expected time
for any fixede > 0 [78].

1.1.2. Sequential label-correcting algorithms

The generic SSSP label-correcting algorithm repeatedly selects an arbitrary edge
(u, v) that violates the optimality condition, i.e., tént > tentu) + c(e), and updates
tent(v) appropriately. The total running time depends on the order of edge relaxations. In
the worst case it is pseudo-polynomi@l(n? - m - C) for integer weights, and(m - 2")
otherwise [2]. Improved label-correcting algorithms keep akef nodes so that whenever
a distance label tet) decreases, themis added toQ. In each iteration, the algorithm
selects a node from Q and examines its outgoing edges to update tentative distances (see
[17,41] for an overview). The classic Bellman—Ford version [11,34] impleménés a
FIFO-Queue and achieves running tidé: - m). Since then, none of the newly developed
label-correcting algorithms could asymptotically improve this worst-case bound. However,
a number of experimental studies [17,25,27,42,44,57,71,93] showed that some recent label-
correcting approaches are much faster than Bellman—Ford and even frequently outperform
label-setting algorithms.

1.1.3. Random edge weights and special graph classes

Average-case analysis of shortest paths algorithms mainly focused ohlltRairs
Shortest Path6APSP) problem on theompletegraph with random edge weights [21,39,
52,70,79,83]. Mehlhorn and Priebe [65] proved that for¢benpletegraph with random
edge weights every SSSP algorithm has to check at 4#st- logn) edges with high
probability. Noshita [74] and Goldberg and Tarjan [46] analyzed the expected number of
decreaseKegperations in Dijkstra’s algorithm; the time bound, however, does not improve
over the worst-case complexity of the algorithm.

Improved SSSP algorithms exist for special graph classes, e.g., there are linear time
approaches for planar graphs [53] or graphs with constant tree width [16].

1.1.4. PRAM algorithms

No parallel PRAM algorithm is known that executes withn - logn + m) work
and sublinear running time for arbitrary digraphs with nonnegative edge weights. The
O(n -logn 4+ m) work solution by Driscoll et al. [31] (refining a result of Paige and Kruskal
[75]) has running tim&(n - logn). An O(n) time algorithm requiring? (m - logn) work
was presented by Brodal et al. [13]. These algorithms settle the nodes one by one in the
order of Dijkstra’s algorithm and only perform edge relaxations in parallel. Hence, using
that method there is no possibility to break the worst-case time bousa{f. All other
known SSSP algorithms for arbitrary graphs trade running time against efficiency.

The algorithm by Han et al. [50] (based on [24]) implicitly solves the APSP problem by
reducing the shortest path computation to matrix multiplications over semirings: it needs
O(log®n) time andO (3 - (loglogn/logn)Y/3) work. Applying randomized minimum
computations [40] on a CRCW PRAM, the algorithm can also be implemented to run
in O(logn) time using®(n2 - logn) work. Deterministically, it is possible to achieve
O(e~L.logn) time using®(n3*€ - logn) work for an arbitrary constaat> 0. Furthermore,
there is a randomized algorithm [61] for SSSP on sparse graphs with integral nonnegative
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edge weights summing t&. It requires®(polylog(m + W)) time with m2 processors.
Recently, Mulmuley and Shah [73] gave a lower boundxdogn) execution time for
SSSP on PRAMs without bit operations using a polynomial number of processors. The
Iower?t’)ound even holds when the bit lengths of the edge weights are restricted to be of size
O(log®n).

Several parallel SSSP algorithms are based on the randomized parallel breadth-first
search (BFS) algorithm of Ullman and Yannakakis [90]. In its simplest form, the BFS
algorithm first performs(\/n - logn)-limited searches fromO(,/n) randomly chosen
distinguished nodes in parallel. Then it builds an auxiliary graph of the distinguished
nodes with edge weights derived from the limited searches. Based on the solution of
an APSP problem on the auxiliary graph the distance values of nondistinguished nodes
are properly updated. This simple BFS algorithm tak¥s/» - polylog(n)) time using
O(/n - m - polylog(n)) work with high probability. A more involved version achieves
O(t - polylog(n)) time usingO((/n - m +n -m/t + n3/t*) - polylog(n)) work for any
t < /n whp.

Klein and Subramanian [62] extended the BFS idea of Ullman and Yannakakis to
weighted graphs. They gave a parallel randomized approximation schenié fot)-
approximate single-source shortest paths computations that ruféim - ¢ 1 - logn -
log* n) time using®(y/n - m - logn) work. Furthermore, they showed how to use the result
above in order to compute exact single-shortest paths with maximum path weight
solving a series of lo@ sub-instances. The algorithm tak®s./» - log L - logn - log* n)
time andO(/n -m -log L - logn) work.

Similar results have been obtained by Cohen [19] and Shi and Spencer [81]. Recently,
Cohen [20] gave aril + ¢)-approximation algorithm for undirected graphs that runs in
polylogarithmic time and takes near linear work. Unfortunately, there seems to be no way
to use it for exact computations by repeated approximations. Cohen also gave a SSSP algo-
rithm that takes polylogarithmic time ar@((n + n®*#) - polylog(n)) work provided that a
O(n*)-separator decomposition for the problem instance is provided as a part of the input.

More efficient parallel SSSP algorithms have been designed for special graph classes.
Here are some examples: Combining the data structure of [13] with the ideas from [89]
gives an algorithm which solves the SSSP problem on planar digraphs with arbitrary
nonnegative edge weights @(n% + n1~¢) time andO(n*<) work on a CREW PRAM.

In contrast, the randomized algorithm of [61] requires planar graphs and integral edge
weights summing td¥. It runs in O(polylog(m + W)) time with n processors. Work-
efficient SSSP algorithms for planar layered graphs have been proposed by Subramanian
et al. [84] and Atallah et al. [7]. Furthermore, there is@tog? n) time and linear work
EREW PRAM algorithm for graphs with constant tree width [15].

Random graphs [12,33] with unit weight edges have been considered by Clementi
et al. [18]: their solution is restricted to constant edge probabilities or edge probability
O (log“n/n) (k > 1). In the latter cas@(log*t1 n) time and optimat?(n - log* n) work
is needed on the average. Reif and Spirakis [79] bounded the expected diameter of the
giant component of sparse random graphs with unit weight©tggn). Their result
implies that the matrix based APSP algorithm neétifoglogn) iterations on average
provided that the edge weights are nonnegative and satisfy the triangle inequality. Frieze
and Rudolph [40] and Gu and Takaoka [48] considered the APSP problem with random
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edge weights and showed that the standard matrix product algorithm can be implemented
in O(loglogn) time and® (13 - loglogn) work on average. Crauser et al. [22] gave criteria

that divide Dijkstra’s algorithm into a number of phases, such that the operations within a
phase can be done in parallel; for random graphs with random edge weights, SSSP can be
solved inO(n1/3 - logn) time using®(n - logn + m) work on average.

1.1.5. Distributed memory machines (DMMs)

PRAM algorithms can be emulated on distributed memory machines. The loss factors
depend on the concrete parameters of the models, e.g., see [43] for emulation results on
the BSP model. However, existing implementations [1,14,54-56,88] on parallel computers
with distributed memory mostly do not use such emulations but apply some kind of
graph partitioning where each processors ruse@uentialabel-correcting algorithm on
its subgraph(s). Heuristics are used for the frequency of the inter-processor exchange of
distance information, load-balancing and termination detection. Depending on the input
classes and parameter choices, some of these implementations perform fairly well even
though no speed-up can be achieved in the worst case. However, no theoretical average-
case analysis is given.

1.2. New results

We propose and analyze sequential and parallel versions of a label-correcting algorithm
for SSSP. Our sequentiak-stepping approach is similar to the “approximate bucket
implementation of Dijkstra’s algorithm” [17] in that it maintains eligible nodes with
tentative distances in an arrady of buckets each of which represents a distance range
of A. The parameten\ is a positive real number that is also called the “step width” or
“bucket width.” Opposite to the algorithm of [17], our approach distinguidigés edges
(which have weight at most) andheavy edgeé&-(e) > A).

Parallelism is obtained by concurrently removing all nodes of the first nonempty bucket
(the so-calleccurrentbucket) and relaxing their outgoing light edges in a single phase. If
a nodev has been removed from the current bucBgt] with nonfinal distance value then,
in some subsequent phaseyill eventually bereinsertedinto B[i], and the outgoing light
edges ofv will be re-relaxed. The remaining heavy edges emanating from all nodes that
have been removed froB[i] so far are relaxed once and for all whBf] finally remains
empty. Subsequently, the algorithm searches for the next nonempty bucket and proceeds as
described above.

The performance of our approach depends on the choice of the stepwidth analyze
this dependence both in terms of abstract graph parameters and in a more concrete average-
case setting.

1.2.1. Random edge weights
We assume independemindomedge weights that are uniformly distribufed [0, 1].
We show that the average-case overhead for re-insertions and re-relaxations is bounded by

3 The results can be adapted to other distribution functiBngoo. For example, it is sufficient i (0) = 0
and F’(0) is bounded from above by some positive constant.
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O + m) if we chooseA = @ (1/d) for graphs with maximum node degréeWe prove
that for maximum shortest path weight= maxdist(v): dist(v) < oo}, purely sequential
©®(1/d)-stepping need®(n + m + d - L) total average-case time. Thus, SSSP can be
solved in linear average-case time whenavel. = O(n + m). For example, this is the
case on arbitrary directed graphs with bounded constant degree.

A simple parallel version for a CRCW PRAM také&¥d? - L - |ngn) time on average,
our best algorithm achieved(d - L - logn +log? n) time and®(n +m +d - L -logn) work
on average. For several important graph classes with random edge weighsésifficiently
small,i.e.d - L -logn = o(n) with high probability, so that the parallel SSSP can be solved
in sublinear time and linear work on average. For example;-itimensional meshes with
random edge weights we hae= O(nY/") whp and hence execution ting&n/" log?n)
using linear work for any constantwhp.

We also consider random graphs [12,33] with random edge weights. We use the
random digraph modeb(n, d/n) that was introduced by Angluin and Valiant [6]. An
instance ofD(n,d/n) is a directed graph witm nodes where each edge is present
with probability d/n, independently of the presence or absence of other edges. Hence,
each node has expected out-degree (and in-degteepdm = d - n + o(n) whp if
d > 1. For random graphs from(n,d/n) with 4 > 2 and random edge weights, we
show L = O((1/d) - logn) whp. Together with the observatish= O(d + logn) whp
this immediately yields an average-case boun@dog®n) time andO(n + m) work.
Furthermore, we show that a modified version for random graphs only takes?n)
time andO(n 4+ m) work on average (Corollary 19).

In Section 10 we also discuss the performanceamlom geometric graphshich are
considered to be a relevant abstraction for many real world situations [28,80].

1.2.2. Arbitrary positive edge weights

The results presented above can be seen as concrete instantiations within a more general
framework that does not necessarily assume random edge weights: call a path with total
weight at mostA and without edge repetitions, i.e., every edge appears on the path at most
once, aA-path Let C4 denote the set of all node paifs, v) connected by soma-path
(u,...,v) and letny :=|C,|. Similarly, defineC . as the set of triplesu, v, v) such
that (u,v') € C4 and(v/, v) is a light edge and letr 4 := |C 44 |. Furthermore, we keep
our definition for the maximum weight of a shortest path,= maxdist(v): dist(v) <
oo}. Using these parameters we show that the sequedtalepping needs at most
Om+m+np+ma+ L/A) operations. The result for random edge weights mentioned
above is obtained by provingy +ms = O + m) whp for A = ©(1/d).

For the parallel version we also need a bound on the total number of phases. The number
of phases for each nonempty bucket is bounded by one plus the maximum number of edges
that occur on any traversetl-path: themaximuma-sizel 4 is defined to be one plus the
maximum number of edges needed to connect any(pair) € C, by a path of minimum
weight, i.e.,
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IA=14+ max min{|A|: A=(u,...,v)isa minimum-weighm-path}.
(u,v)eCp

A simple parallelization ofA-stepping runs in tim@(% -d - 14 -logn) and needs work
On+m+na+ma—+ % -d -1 -logn) whp. The respective average-case bound mentioned
before follows by provind, = O(logn/loglogn) whp for A = ©(1/d). We also show
that the factor/ can be removed from the execution time using more sophisticated load
balancing algorithms.

A further acceleration can be achieved by a preprocessing that actively introduces
shortcut edgesito the graph, i.e., it inserts an ed@e v) with weightc(u, v) = dist(u, v)
for each shortest pata, .. ., v) with dist(u, v) < A. After shortcuts are present, the SSSP
algorithm needs at most a constant number of phases for each nonempty bucket. Let
n'y (m’y) denote the number afimple A-paths (plus a light edge) and €t denote the
number of edges in the longest simplepath. We propose a shortcut insertion algorithm
that needs0(//, logn) time andO(n + m + n'y +m’, + 1/, - logn) work on a CRCW
PRAM whp. For random edge weights armd= ©@(1/d) the terms simplify as follows:
n'y +m'y = O(n+m)andl’y = O(logn/loglogn) on average, thus resulting in our fastest
SSSP algorithm witt(d - L - logn + log?n) time and®(n +m +d - L - logn) work on
average.

Based on the shortcut insertion algorithm, we propose an efficient method which finds
the largest possible bucket widththat still ensures a®(n + m) bound on the overhead
for node reinsertions and edge re-relaxations.

1.2.3. Further results

Many of the results also transfer to distributed memory machines, and experiments show
that already a simple implementation of the algorithm achieves significant speedup on real
machines.

Preliminary accounts of the results of the present paper have been published in [67,68].
Subsequently, it was shown that sequential SSSP on arbitrary directed graphs can be solved
in linear average-case time [45,66].

1.3. Overview

The rest of the paper is organized as follows: in Section 2, we introducg-8tepping
algorithm and analyze its basic properties including sequential execution time in Section 3.
Sections 4-8 develop parallel algorithms. The simple algorithms explained in Section 4
are improved in Section 5 using more sophisticated load balancing algorithms. A further
acceleration is obtained in Section 6 by precomputing paths consisting of many short edges.
Section 7 generalizes the algorithm to work with arbitrary edge weights by providing a
parallel algorithm that finds a good value for the step widthin Section 8 we consider
a more practical distributed memory model wittprocessing units (PUs) connected by a
network. Simulations and prototypical implementations described in Section 9 demonstrate
that at least the simple variants afstepping are quite practicable. A discussion of some
further possibilities for refinements in Section 10 concludes the paper.
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2. The basic algorithm

Our sequentialA-stepping algorithm shown in Fig. 1 resembles the “approximate
bucket implementation of Dijkstra’s algorithm” [17]. It maintain a one-dimensional array
B of bucketssuch thatB[i] stores the sefv € V: v is queued and teft) € [i - A, (i +
1) - A)}. The parameten is a positive real number that is also called the “step width” or
“bucket width.” For maximum shortest path weight the arrayB must containfL/A]
buckets. However, by cyclically reusing empty buckets, alréagymax.cg[c(e)/A1+ 1
buckets are sufficient. In that caB¢i] is in charge of all tentative distances[ity - b+ i) -
A, (j-b+i+1)-A)forall j >0.

In eachphase i.e., each iteration of the inner while-loop, the algorithm removes
all nodes from the first nonempty bucket (current bucket) and relaxelgghtl edges
(c(e) < A) out of these nodes. This may result in new nodes entering the current bucket
which are deleted in the next phase. Furthermore, nodes previously deleted from this bucket
may bereinsertedif their tentative distance has been improved by the previous phase. The
relaxation ofheavyedges(c(e) > A) is not needed at this time since they can only result
in tentative distances outside of the scope of the current bucket, i.e., they will not insert
nodes into the current bucket.

Once the current bucket finally remains empty after a phase, all nodes in its distance
range have been assigned their final distance values during the previous phase(s).

foreach v € V dotent(v) := co

relax(, 0); (* Insert source node with distance 0 *)
while —isEmpty(B)do (* A phase: Some queued nodes left (a) *)
i:=min{j > 0: B[j]# ¥} (* Smallest nonempty bucket (b) *)
R:=0 (* No nodes deleted for bucket[i] yet *)
while B[i] # ¢ do (* New phase (c) *)
Req:= findRequests|[:], light) (* Create requests for light edges (d) *)
R :=RUBJ[i] (* Remember deleted nodes (e) *)
Bli]:=0 (* Current bucket empty  *)
relaxRequests(Req) (* Do relaxations, nodes may (re)ahtdr(f) *)
Req:= findRequests¢, heavy) (* Create requests for heavy edges (g) *)
relaxRequests(Req) (* Relaxations will not reBlf:] (h) *)

Function findRequest(’, kind : {light, heavy}) : set of Request
return {(w, tentw) + c(v, w)): v € V' A (v, w) € Ekind)}

ProcedurerelaxRequests(Req)
foreach (w, x) € Reqdo relax(w, x)

Procedurerelaxw, x) (* Insert or movew in B if x < tent(w) *)
if x <tent(w) then
B[|tent(w)/A]]:= B[[tent(w)/A]]\ {w} (* If in, remove from old bucket *)
B[|x /A]l:= B[|x /A]1U{w} (* Insert into new bucket *)
tentw) :=x

Fig. 1. A sequential variant o -stepping (with cyclical bucket reusage). The sets of light and heavy edges are
denoted byEjight and Eneavy respectively. Requests consist of a tuple (node, weight).
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Subsequently, all heavy edges emanating from these nodes are relaxed once and for all.
Then the algorithm sequentially searches for the next nonempty bucket.

For the sequential version, buckets can be implemented as doubly linked lists. Inserting
or deleting a node, finding a bucket for a given tentative distance and skipping an empty
bucket can be done in constant time. Deletion and edge relaxation for an entire bucket can
be done in parallel and in arbitrary order as long as an individual relaxation is atomic,
i.e., the relaxations for a particular node are done sequentially. If we want to use more
parallelism, we can combine all relaxations for the same node to a single relaxation with
smallest new distance. We will give further details of the parallelization in Section 4.

2.1. Difficult inputs

The performance of\-stepping crucially depends on the choice of the param®&t&pr
integer weights and\ = 1, A-stepping coincides with Dial’s implementation of Dijkstra’s
algorithm (e.g., [2, Section 4.6]). buckets will have to be traversed, but no reinsertions
occur. Even though the depth of the shortest path tree may be small, there are graphs having
L = 2(n-logn + m) such that both sequential and parallektepping perform poorly.

On the other hand, fan > n - max.cg c(e) our algorithm will exclusively use the first
bucket, hence we obtain a parallel version of the Bellman—Ford algorithm which has high
parallelism since all edges can be relaxed in parallet. if the maximum depth of the
shortest path treg, passes through the adjacency list of all queued nodes are sufficient.
Unfortunately, this may be quite inefficient compared to Dijkstra’s algoritén@m)
operations are needed in the worst-case.

The idea behindA-stepping is to find an easily computable fixadhat yields a good
compromise between these two extremes. However, in particular for the parallel version,
this is not always possible.

Figure 2 provides an input with(n) edges wherany fixed A either leads ta2 (n)
phases o2 (n) operations: The.-part with long edge weights consists i6f= © (\/n)
chains ofr” = ©(y/n) nodes. Itis responsible fé? (n) distance values that are interspaced
by at lastz. The S-part consists of a chain of siz€ where the last node spaégn) single
nodes and has in-degré&(n”) from short-cuts along the chain. Thus,Af= o(n) then
2(n) different buckets must be inspected, fori.e., 2(n) phases. On the other hand,
A= 2(n) leads to® (n"n) = O (n'°) operations due to re-relaxations in péirt

However, in Section 3 we give conditions on wharis “good” and it turns out that at
least for random edge weights, a gaads easy to find. In Section 7 we discuss how to
find a goodA for arbitrary nonnegative edge weights.

3. Analysis of the A-stepping algorithm

The purpose of this section is to analyzestepping on an abstract level that is
independent of the machine model used thus producing tools that can be used in the
analysis of sequential, PRAM, and distributed memory implementations. Our analysis
proceeds in three stages in order to make the results adaptable to different graph classes.
In Section 3.1 we consider the number of reinsertions (needed to bound the total number
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Fig. 2. Bad input graph fon-stepping with fixed step width.

of operations) and the number of phases (heeded to bound the parallel time) in terms of
parameters like/, L, andl, (as described in Section 1.2). Hence, we do not make any
assumptions on the class of graphs investigated. Section 3.2 analyzes these conditions
for the case of random edge weights. Finally, Section 3.3 completes the analysis by
additionally assuming random graphs.

3.1. Reinsertions and progress

The setC 4 andC 4+ as introduced in Section 1.2 play a key role in analyzing both the
overhead and the progresssfstepping. The overhead compared to Dijkstra’s algorithm
is due toreinsertionsandre-relaxations i.e., insertions of nodes which have previously
been deleted and relaxation of their outgoing edges. The following lemma bounds this
overhead.

Lemma 1.The total number of reinsertions is boundedby= |C 4| and the total number
of re-relaxations is bounded iy, = |C x4 |.

The proof is quite similar to the correctness proof of Dijkstra’s algorithm.

Proof. We give an injective mapping from the set of reinsertions i6tp. Consider a
nodewv which is reinserted in phase There must be a most recent phase ¢ when

v was deleted. Consider any shortest paitv) = (s,..., v, ...v) wherev’ is the first

unsettled node om(v) immediately before phasg. Hence,v' already has its final
distance. Furthermore, sineéis at least as close toasv bothv” andv will be deleted in
phase’ — v’ is settled then whereasis reinserted later in stepIn particulary’ # v. Note

that the partd’(v/, v) = (v/, ..., v) of A(v) is a shortest path froml to v. Since both) and

v are deleted by phasé A’'(v', v) is also aA-path, i.e.,(v/, v) € C. Sincev’ becomes
settled, the reinsertion afin phase can be uniquely mapped to’, v).
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Similarly, each re-relaxation can be uniquely identified by a reinsertion plus a light
edgee. O

The number of phases needed can be bounded as a function of the stepiwitith
maximum path weighL and the maximun-sizel:

Lemma 2. For any step widthi, the number of phases is bounded%nm.

Proof. The algorithm repeatedly removes all nodes from the current bucket and relaxes
outgoing edges until the bucket finally remains empty. Then it proceeds with the next
bucket. For maximum path weiglit it has to traversd./A buckets. Hence, in order to
prove the lemma it suffices to prove that at mbsphases are required until any bucket
remains empty. Consider any node s with dist(v) € B[i] andlet(s, ..., vo, v1,..., v =

v) denote a shortest path frafto v such that, throughv; are the only nodes settled by
iterations of B[i] and such that is minimal, i.e., among all the shortest pathsitohoose

one with a minimal number of nodes BYi]. By definition, before the first node removal
from bucketB[i], vg must have been settled in a previous bucket. Hence, the(eglga)

has been relaxed with the proper distance valuaedoso thatv; has already reached its
final distance. Thereforay will be settled in the first phase for buck&{i]. Similarly,

it can be concluded inductively that in phagdor bucketB[i], 1< j </, v; is settled.
Now, [ cannot exceet), since otherwisévs, v;) € C 4 would have no connection with less
thani/, edges, thus contradicting the definition/af So, after/, iterations the last node

in bucketB[i] must be settled. O

We now have enough information to determine the execution time of sequential
stepping in terms af, m, A, na, andm x:

Theorem 3.SequentiaA-stepping can be implemented to run in tié: +m + L/A +
na+mp).

Proof. We charge the operations performed #ystepping to one of nodes, one ofn

edges ofG, one of the at most./A empty buckets traversed, or to an elemen€in or

Ca+. The time bound is established by showing that none of the mentioned objects gets
more than a constant charge.

The loop control in lines (a) and (c) can be implemented in constant time by keeping
counters of the buckets sizes and their sum. These costs can be charged to nodes since in
each iteration at least one node is settled.

Finding the next nonempty bucket in line (b) can be charged to empty buckets each of
which is only considered once.

Identifying light requests in line (d) and doing the relaxations in line (f) needs constant
work for each re-relaxation and reinserted node it’&m + n) time preprocessing phase
orders the adjacency lists into sublists for light and heavy edges, respectively. Nodes once
deleted from a bucket in line (e) can be remembered by storing them in a list. In order to
avoid duplicates in the list we use a boolean adrgyfor the node indices, initialized with
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0 and set/[i] := 1 when nodé is deleted for the first time. By Lemma 1 these operations
can be charged to elementsin andC .

The work done for relaxing heavy edges in lines (g) and (h) can be charged to nodes
and edges since heavy edges are relaxed only orce.

We get alinear time algorithmifo +ma + L/A = O(n+m). For a parallel algorithm,
the goal is to find aA which is small enough to preserve this work efficiency yet large
enough to yield sufficient parallelism.

A very conservative approach to choadegoes back to Dinitz (and, independently,
Denardo and Fox) [25,30]. They observe that there are no reinsertions if we choose the step
width A just below the minimum edge weight and we haye= 1 in this case. Another
way to ensure asmdlk (I, < 2)itto add a “shortcut” edgé, w) whenevefv, w) € Cx.

We will discuss this approach in Section 6.

3.2. Random edge weights

This section is devoted to proving that for graphs with maximum node debesel
random edge weights uniformly distributed[idy 1], A = ®(1/d) is a good step width in
the sense thal is small enough to limit the overhead of reinsertions and re-relaxations yet
large enough to yield sufficient parallelism.

The results also hold for random graphs fré@nw, d/n) with random edge weights if
we replace the maximum degrédy the average node degrée

Theorem 4.For random edge weights, @ (1/d)-stepping scheme without shortcut edges
performsO(n +m + d Ll o) sequential work divided betweéhd Li,) phases whp where
Ao = O(logn/loglogn).

Proof. By Lemma 2 the number of phases is bounded%im = O(dLly) for A =
©®(1/d). Subsequently, we show in Lemma 5 that long paths with small total path
weight are unlikely* This observation is then used in Lemma 6 in order to prove that
I = O(logn/loglogn) is a bound on the maximum size ofapath whp.

To bound the amount of work needed, we argue as in the proof of Theorem 3 and
charge the operations performed to nodes, edges, and buckets. Using Lemma 1 it remains
to boundn, andm 4. Lemma 7 shows that taking = O(1/d) implies E[na] = O(n)
andE[ma] = O(n). Finally, Lemma 9 states that the same bounds also hold with high
probability. O

Lemma 5. Consider independent random edge weights uniformly distributg@l i and
a given path of nonrepeated edges. The probability that the total path weight is at most
A < lis given byal/1!.

Proof. Let X; denote the weight of théth edge on the path. The total weight of the
path is thean=l X;. We prove by induction ovet that P[Zf=l X; < Al= Al for

4 Thisis the only part in our analysis that would have to be adapted for other than uniform weight distributions.
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A < 1:if I =1 then due to the uniform distribution the probability that a single edge
weight is at mostA < 1 is given by A itself: P[X1 < A] = A. Now we assume that
P[Zf»=l X; < Al= Al/1) for A < 1 is true for somé > 1. In order to prove the result
for a path ofl + 1 edges, we split the path into a first part/aédges and a second part
of one edge. For a total path weight at masive have to consider all combinations for
0 < z < A <1 such that the first part dfedges has weight at moat— z and the second
part (one edge) has weightThus,

1+1 A 4 I I+1
(A—x) A
P|:21X,'gAi|=/P|:21X,'<A—xj|dx=/ T dx:(l+1)!.
1= 1= 0

0

Lemma 6.For A = O(1/d), no A-path contains more thaly = O(logn/loglogn) edges
whp.

Proof. There can be at moat paths without edge repetitions of sizieading into a given
nodev or nd' such paths overall. (For random graphs, there are at mgsissible paths
without edge repetitions per node with a probability@f»)’ each.) Using Lemma 5 we
can conclude that the probability for the presence of Angath of sizel is bounded by
n(dA)' /1! (recall thatA-paths do not use edges more than once). Therefore
l lA l lA
P[3A-pathA: |A] > 14] < Zn(dA') gn(dA? Z (d?) @A
5T, Al Ia! >0 Al Ia!

la
—omlA” o <%
Ia! I

For A = O(1/d) and i, = O(logn/loglogn) the above probability is polynomially
small. O

Ia
) -O(n) sincek! > (k/e)k.

Lemma7.For A =0(1/d), E[na] = On) andE[m ] = O(n).

Proof. The total number ofA-paths in the graph is clearly an upper bound@n| =na4,
the number of node pairs that are connected by saapath. CountingA-paths and their
probabilities as in the proof of Lemma 6, we see that the expected numbkepaths is
bounded by

d' Al
Zn 0 :n(edA — 1) =0m)
I>1
for A=0(1/d). Thus,E[na] = O().
Each triple(u, v, w) € Ca4 corresponds to &A)-path (u, ..., v, w). The expected
number of(2A)-paths is given by

I I
an (24) =n(eZdA - 1) =00)
Al
I>1
forA=0(1/d). HenceE[mA]1=0®m). O
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In order to show that the expected bounds also hold with high probability, we first bound
the number of nodes reached from a given node viaath:

Lemma 8.For A = O(1/d) and any node,

Hu: (v,u) € Ca v (u,v) € Cal| < n©(1/loglogn)

with high probability.

Proof. Consider the nodes reached franvia a A-path. We argue that the number of
nodes reachable by connections@n of length/ can be bounded by the offspring in
the /th generation of the following branching process ([9,51] provide an introduction to
branching processes): An individual (a nodehas its offspring defined by the number
Y, of light edges leaving it. LeZ; denote the total offspring aftérgenerations, i.e.,
Z1 =Y,. Thebranching factoof a branching process is given py= E[Z1]. Furthermore,
for branching processes with identical and independent probabilities for the generation of
new nodesE[Z;] = p!. Additionally, it is shown in [8] (as cited in [60, Theorem 1)) that
Z; = O(p' logn) whp.

As long as new edges are encountered when following paths ayttbé offspring of
the branching process is an exact model for the number of paths leawhgch traverse
only light edges. After a node has been reached from multiple paths, the events on those
paths are no longer independent. However, all but one of the multiple paths produce only
duplicate entries int@ 4. The additional paths can therefore be discarded. All remaining
events are independent.

For independent edge weights uniformly distributed@nl], we haveE[Y,] < dA
(E[Y,] = dA for random graphs), and by the discussion abd¥gZ;] < (dA)! and
Z; = O((dA)' logn) whp. In order to asymptotically bound the s@g Z;fordA > 1
we can concentrate on ter) since a growing exponential sum is dominated by its last
summand. Fon\ = O(1/d) we can substitute= [, = O(logn/loglogn) andd A = O(1)
yielding the desired bound.O

Although the bound from Lemma 8 is quite rough (in particular for random graphs and
also ifd A < 1) it suffices to prove that, andm 4 are rather sharply concentrated around
their means:

Lemma 9.For A= 0O(1/d),ns <E[na]l + On) andma < E[ma] + O(n) whp.

Proof. We only give the argument for4; the proof form, can be made in a largely
analogous way. The proof can also be adapted to random graphs with averageidegree
Let Q be the event that at mosp logn light edges leave any node @ and that the
number ofA-paths entering or leaving any node is at ma%t '°9'°9” for some constant
ag, let ag depend on another positive constghivhich we are free to choose. Using

Chernoff bounds and Lemma 8 we can see thatolds with probability at least & n—#
for an appropriate constang and sufficiently large:.
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Fig. 3. A-paths possibly affected by changing the weights of edges out ofinode

For eachv € V, define the random variablg, := {(v, w, c(v, w)): (v, w) € E)}, i.e.,
X, describes the edges leaving nadiecluding their weigh® Now, n4 can be viewed as
a function of the independent random variahlgs In the following we will investigate
how muchn 4, can change if a singl¥, is altered.

If Q holds, then changing’, has a limited effect om »: by the definition ofQ, there
can be at most?/!091°9" A_paths entering a node; the number of edges leaviigat
mostag logn and from each node reached over these edges there are atrgo9n
outgoingA-paths. Multiplying these three quantities gives an upper bound on the number
of A-paths affected if the weights of the edges leaviraye changed. Figure 3 depicts this
situation. Hence(n?/1091097)244 logn = n®%/109109" is an upper bound on the impact
onn, if Q holds. On the other hand, {# does not hold, then altering, may change:
by at most:2 (sincen 4 < n2). Therefore, thaverageémpact onn , when changing(, is

bounded by
< (1 _ n—ﬁ)nO(l/Ioglogn) + n2=B — nO(l/IogIogn) for g > 2.

Cy X

This can be used together with theethod of bounded martingale differen¢@g2,64] in
order to show

2
P[na <Elnal+1t] >P[O] - exp(thz).
v=1%v

Substituting 2", ¢2 < 2n(n@/109109m)2 — ;,,0(1/loglogn) gndr = n we get

2
_nl—O(l/ loglogn)

P[nA < E[nal —|—n] >1-nFf _e 0w OWhghen > 1 _ ,=F g
>1—-2n""

forg>2. O
3.3. Random graphs

So far, the analysis treated the maximum shortest path welghts a parameter.
Clearly, there are graphs—even with random edge weights—whéte—= 2(n) so that
it makes no sense to relax edges from different nodes in parallel. But this is quite
atypical. In particular, for random graphs with average dedree now give results which

5 This way to define a sequence of random variables is related tdte exposure martingates described
in [72, Exercise 4.10].
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show thatL is usually rather small. Substituting this result into Theorem 4 we see that
O(lalogn) = O(log?n/loglogn) phases of & (1/d)-stepping algorithm suffice to solve
the SSSP. If we have introduced shortcut edges this reducgddagn) phases.

In order to bound. we can use a result on tlitameterof sparse random graphs: let
minsiz€u, v) denote the minimum number of edges needed among all pathsifton
in a graphG = (V, E) if any, —oo otherwise. Then thdiameterof G is defined to be the
max, yev{minsiz&u, v), 1}.

Lemma 10[79]. The diameter of a random directed graph frdbin, d/n) is bounded by
O(logn) whp wheneved < ¢* ord > 2- ¢*, wherec* > 1is some constarft.

Since each edge has weight at most obes O(logn) whp for nearly all choices
of d. However, the more random edges are added to the graph, the smaller the expected
maximum shortest path weight:

Theorem 11.Let G be a random graph fronD(n, d/n) with diameter©(logn). For an
arbitrary source nodes and independent random edge weights uniformly drawn from
[0, 1], the maximum shortest path weightdh L = maxdist(s, v): dist(s, v) < oo} is
bounded from above B9 ((1/d) - logn) whp.

This is a well-known result for large expected degreks, a - logn, wherea is some
constant so that all nodes 6f are reachable from the source node whp [39,52]. In the
following we will deal with the casé < a - logn.

Proof. The set of nodes reachable fraim denoted byR(s) is eithersmall |R(s)| =
O((1/d) - logn) whp, orgiant, |R(s)| = @(n) whp [59]. Hence, ifR(s) is small, then
Theorem 11 follows immediately: any node R{s) can be reached by a path of at most
|R(s)| edges, each of which has weight at most one.

Therefore, from now on we assume th&{s)| is giant. Our proof proceeds as follows.
First we show that a subgragh of G contains a strongly connected compon€ntof
©®(n) nodes so that any pair of nodes frafi is connected by a path of total weight
O((1/d) - logn) whp. Then we prove that there is a path frerto C’ not exceeding the
total weightO(1 + (1/d) - logn) whp. Finally, we show that all nodes iR(s) can be
reached fromC’ via a path of weightO(1 + (1/d) - logn) whp. Ford = O(logn) the
above path weights sum up € (1/d) - logn) whp.

If d = O(1), the result is an immediate consequence of the assumption that the graph
has logarithmic diameter. Otherwise, we can assume that & d < a - logn. For this
proof call edges with weight at most-3*/d tiny. Consider the subgrapti’ = (V, E')
of G obtained by retaining tiny edges onl§/ is a random graph with edge probability
3. c*/n, and it has a giant strong componéHtof size« - n for some constant (e.g.,
[5,59)]).

6 The value of* depends on the constant used in the definition of “whp.” We do not dwell on the details since
this gap seems to be an artifact of the analysis [79].
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By Lemma 10 the diameter of the subgraph induced by the nod&sand its adjacent
edges inE’ is at mostO(logn) whp. Since all edges i’ have weight at most 3c*/d
any pair of nodes front” is connected by a path of total weight((1/d) - logn) whp.

We now show that there is a path frairto C’ not exceeding the total weigli?(1 +
(1/d) - logn) whp. We apply the node exploration procedure of [59] and [5, Section 10.5]
starting in the source nodeand using the edges @&: Initially, s is active and all other
nodes are neutral. In each iteration we select an arbitrary activewnatkclare it dead
and make all neutral nodes with (v, w) € E active. The process terminates when there
are no active nodes left. L&t be the number of active nodes afteiterations o = 1).

We are interested in the set of nodes reached froaiter 1’ = (c - logn)/d iterations

for some appropriate constant- 1. If any of those nodes is i@’ then we are done.
Otherwise,Y1, ..., Yy > 1 sinceR(s) is giant by assumption. Let BIM, p] denote the
binomial distribution with parametersandp, i.e., the number of heads inindependent
coin tosses with probability of heags Provided that; 1 > 1, Y; is distributed as follows
[5,59]: BIN[n —1,1— (1 —d/n)']1+1—1,i.e.,Y, is sharply concentrated around

fO:=m-1 -(1-@A—-d/n))+1-t.
We use the inequality

A—x) <l—x-y+@x-y%2 ifx-y<1,
2.¢c—-1

<1- cx-y ifex-y<l e¢>1,
in order to derive a lower bound ofi(r). Indeed we have - d - t'/n = ®(logn)/n < 1,
hence

fh=m-1)- 2.26_1-67-t’/n+1—t’
- C

c-(n—1 - 1
7n ( 2-c) ogn

Sinced > 3-¢* > 3 there is a choice for the constantandc’(c) such thatf (') > ¢’ -logn
andY, > (c¢’/2) - logn whp by Chernoff bounds.

So, there ar&,y > (¢’/2) - logn active nodes whp whose outgoing edges have not yet
been inspected in the search procedure frorhlow consider an arbitrary active node
v ¢ C’ and an arbitrary node € C’.

We only know that a possible edg@e, w) is not tiny in case there is also a tiny edge
(w’, v) from some node’ € C’ (otherwisev would be inC’). We will find a nontiny edge
(v, w) with probability (d — c*)/n, and for all outgoing edges under consideration these
probabilities are independent. Singg | = 2(n) andY,, = £2(logn), the probability that
at least one such edge’, w) exists is at least + (1 — (d — ¢*)/n)¢ 109" > 1 — n=F for
any constang > 0, an appropriate choice of(8) and sufficiently large:. Consequently,
there is a path from to C’ using at most)(1 + (1/d) - logn) edges whp. Since all edges
one this path have weight at most one, the desired bound on the path weight toath
follows immediately.

The same technique is applied to show that any noifeR (s) which does not belong
to C’ can be reached front’ via a path ofO(1 + (1/d) - logn) edges inG whp.
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However, now the search procedure follows the edges in the opposite direction. Note that
the different search procedures are not mutually independent. Still, each single search fails
with probability at mostz—#. Hence, using Boole’s inequality all nodes can be reached
within the claimed bounds with probability 4 n - n=# = 1 — n=®#=1D which is high
probability since we are free to chooge This completes the proof of Theorem 11 for
3.¢*<d<a-logn. O

4. A simple parallelization

Our parallel SSSP algorithms are based on sequentisiepping: we stick to the
sequential search for the next nonempty bucket but perform the operations for a phase
of the current bucket in parallel. In order to do so we need to devise strategies how the
work for a phase is subdivided among the processors.

We start with a straightforward algorithm based ormadomdistribution of the nodes
to PUs (Section 4.1): the bucket structure is distributed over the PUs. In a phase, each PU
does the work for the nodes randomly assigned to its own structure. This strategy is already
quite good for sparse graphs where the maximum node degree is not much larger than the
average node degree, e.g., road-maps.

The algorithm also serves as a basis for the distributed memory algorithms discussed in
Section 8 and the implementation described in Section 9. In Section 4.2 we show how a
small modification can yield better results for random graphs. Only for nonrandom graphs
with large node degree variations, the random node allocation used in this section is not
sufficient to guarantee good load-balancing for many processors. We will deal with this
problem in Section 5.

4.1. Graphs with low maximum degree

Theorem 12.The single source shortest path problem for directed graphs mvitlodes,

m edges, maximum in-degree and out-degfeenaximum path weight, maximuma-
sizelx, na, andm 4 defined as in Sectioh.2 can be solved on a CRCW PRAM in time
O(%diplogn) and workO(n +m +na +ma + 4dialogn) whp.

To implement the operations from Fig. 1 in a distributed way, we first have to explain
the layout of the data structures. The nodes are distributed randomly over the PUs but
each node has its adjacency list locally accessible. These adjacency lists are partitioned
into heavy and light edges. The bucke&] of the bucket queue and the gebf deleted
nodes are split among the PUs following the distribution of the nodes, i.e., if Btdres
the nodesV; then it also store®[i]1N V; and R N V;. Similarly, the relaxation requests
Req are generated locally for eaBhi] N V;. Then the requests are redistributed according
to their target nodes and the PUs responsible for them. All required operations can be
implemented using fairly standard parallelization techniques. The difficult part is to show
that the work is sufficiently evenly distributed among the PUs.

To prove Theorem 12, we explain in a step-by-step manner, how the algorithm from
Fig. 1 can be parallelized using=[(n +m +na +ma)/((L/A)dlslogn)] <n PUs.
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Preparations The nodes are assigned to random PUs by generating an array “ind” of
random PU indices. Entry id] gives the PU responsible for nodeThe adjacency lists

are reorganized into separate arrays of heavy and light edges for each node. Each of the
p PUs maintains its own bucket structure and stores there the queued nodes it is responsible
for. These operations can be done in tith@n +m)/ p +log(n)) and take?d (n + m) space.

Loop control  Skippingk empty buckets can be done in tir6i&k + logn)—each PU can
traverse locally empty buckets in constant time per bucket. E@&tggn) iterations it is
checked whether any PU has found a nonempty bucket and, if so, the globally smallest
index with a nonempty bucket is found.

Maintaining R: The set of removed nodd&can be represented as a simple list per PU.
Inserting a node several times can be avoided by storing a flag with each node that is set
when the node is inserted for the first time.

Generating requests Let k = |B[i]| and let K denote the total number of edges
emanating from nodes iB[i]. Since the nodes have been randomly assignedk the
adjacency lists to be scanned can be viewed as jobs of size atdnvasich have been
randomly assigned to the PUs. This situation can be analyzed using the following useful
result based on weighted Chernoff bounds [4, Lemma 2]:

Lemma 13.Consider any number of subproblems of siz€¢0yv]. Let K denote the sum
of all subproblem sizes. If the subproblems are randomly allocateol RiJs, then the
maximum load of any PU will be bounded ®YK /p + d log(n + p)) whp/

Assigning Requests to PUsLet Req; be the set of requests generated by PAny
request(w, x) € Req; must now be transferred to the bucket structure associated with
PU Pindw). Using Lemma 13, it can be seen that due to the random indexing, each
PU receivesO(| | JReq;|/p + dlogn) requests whp. The value ¢f JReq;| can be
obtained and broadcast #(logn) time. Each PU sets up an empty request buffer which

is a constant factor larger than needed to accommodate the requests directed to it whp.
The requests are placed by “randomized dart throwing” [69] wherg Rigs to write

(w, x) € Req; to a random position of the target buffer &fU ind(w) (see Fig. 4).
Several PUs may try to write to the same memory location. This is the only step of
the parallelization that needs the CRCW PRAM. Due to the choice of the buffer sizes
each single placement succeeds with constant probability. Using Chernoff bounds it is
straightforward to see that the dart throwing terminates in time proportional to the buffer
size, O(||JReq;|/p + dlogn) whp. For the unlikely case that a buffer is too small,
correctness can be preserved by checking periodically whether the dart throwing has
terminated and increasing the buffer sizes if necessary.

7 The seemingly unrelated parametecomes into play since we based our definition of “whp” on it. Also
note, that using a more detailed calculation, a bokridl + o(1))/p can be proven foK = w(pdlog(n + p)).
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Fig. 4. Placing requests into buffers by randomized dart-throwing. Procggsarcceeds in placing its currently
treated request i and can turn to its next request, and P, contend for a free slot iB1. P, wins. P has to
probe another position iB1. P fails because the chosen position is already occupied.

Performing relaxations Each PU scans its request buffer and sequentially performs the
relaxations assigned to it. Since no other PUs work on its nodes the relaxations will be
atomic.

To summarize, control overhead accounts for at niftigbgn) time per phase; the load
imbalance accounts for at madtd logn) time per phase. Summing over all phases and
by using Lemma 2, we get an execution time&¥f(n +m +na +map)/p + %dlA logn).

4.2. Improvements for random graphs

We now outline how explicit load-balancing for the generation of requests yields a
more efficient parallelization for the case of random graphs. Although this result will be
superseded in subsequent sections, it introduces techniques needed later and demonstrates
that simple algorithms can work quite well for “benign” inputs:

Theorem 14.Consider random graphs fro(n, d /n), with arbitrary nonnegative edge
weights, maximum path weight and maximumi-sizel », whereA is chosen sufficiently
small in order to ensure s +ma = O(n). In that case, SSSP can be solved on a CRCW
PRAM in timeO(d + (L/A + logn)ialogn) and workO(dn + (L/A + logn)l, logn)
whp.

If the edge weights are also random, then all butdhleyn smallest edges per node can
be ignored without changing the shortest paths for some consfatts2]. Thus, after an
initial pruning step we may assume= O(logn) for random edge weights. Together with
Lemmas 6 and 7, and Theorem 11 we get:

Corollary 15. The SSSP on random graphs frabin, d /n) with random edge weights
can be solved usin@ (1/d)-stepping in time?(log® n/ loglogn) and O(dn) work on a
CRCW PRAM whp.
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Function findRequests(’, kind : {light, heavy}) : set of Request

k:=73",cy outdegregnq(v)

assign a unique number j < k (* Prefix sums *)
to each edge of type ‘kindv;, w;) leaving a node i’

for 1< j <k dopar Redj]:= (wj,tentv;) +c(vj, wj))

Fig. 5. Finding requests in an explicitly load balanced way.

In the following we show how Theorem 14 is obtained. From the previous paralleliza-
tion we maintain the idea that there are at mps{ n separate bucket structures, where
each processor is in charge of its own structure. The only new feature we add is to explic-
itly organize the generation of requests. Instead of generating the set of requests derived
from the bucket structure of PUexclusively by PU:, now all PUs cooperate to build the
total set of requests. This can be done by computing a prefix sum over the adjacency list
sizes of the nodes in the request set first and then assign consecutive groups of nodes with
about equal number of edges to the PUs; see Fig. 5 for the pseudo code. Nodes with large
out-degree may cause several groups containing only edges which emanate from this very
node. The extra time needed to compute the prefix sums and schedddegs:) per
phase.

Now we exploit the structure of random graphs to show that for relaxing requests there
is no load balancing problem. For heavy edges this is easy to see since they are relaxed
only once: for random graphs their targets are independently distributed and therefore by
Chernoff bounds, each bucket structure (PU) receives OXi|Red/p + logn) requests
whp. Since there are at moéI( 14) phases and at mo€d(dn) relaxations of heavy
edges in total, this accounts f6X(dn/p + ZZA logn) time.

Although assigning light requests works as for heavy requests, we get a technical
problem here. The targets of re-relaxed edges are no longer independent. However, targets
are still independent when edges are relaxed for the first time. Let

K; :=|{(v,w) € E: dist(v) € [i A, (i + DA) Ac((v, w)) < A},
i.e., the number of light edges ever relaxed in buckedt counting re-relaxations. Then,
by Chernoff bounds, no node receives more tBHfK; logn/n]) requests in any phase
for bucketi whp. LetK;, denote the number of requests sent in tttephase for bucket
Since nodes are placed independently of the computation, we can use Lemma 13 again,
to see that no PU receives more tf@l(]K/ /p + [Kilogn/n]logn) requests in phase
j for bucketi whp. For the request contentioki* summed over all phases we use
Z K/ <n+np+ma, Z Ki =0O(a(n+np+mp)), andny +mpa = O(n) whp
by Lemmas 7 and 9:

K, Tkl
K* = O(Z — 4 [ﬂ—‘ Iogn)
n

ij p

K;l
O(n—i—nA +ma +Z(1+ ogn)logn)
n

p T

L N
0(ﬁ+< la  latitnatmy) ogn>|ogn)
p

A n
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n L
= O(— + <— + Iogn)lA Iogn).
p A

Hence, the total time consumption is given &dn/p + (L/A + logn)lalogn). The
work and time bounds for the PRAM follow from choosipg= min{n, [dn/((L/A +
logn)lalogn)}.

5. Faster parallel bucket traversal

The parallelization of Section 4.1 is well-suited for sparse graphs with low node degrees,
e.g., for road-maps where the maximum node degré® usually bounded by a small
constant. However, the performance may deteriorate on graphs with high degree nodes
because of poor load balancing for generating and performing requests. In Section 4.2 we
already demonstrated improvements fandomgraphs by explicitly load balancing the
generation of requests. Now we show how to gain a facte? @f) for arbitrary graphs by
also load balancing the request executions.

In short, the additional balancing works as follows: after their generation, all requests
are rearranged according to their target nodes. This rearrangement turns out to be a
bottleneck of the parallelization. The algorithmically most interesting part here is that
rearranging does not require sorting but orgmisortingwhich can be performed
significantly faster. The remaining operations are fairly simple. The strictest request within
each group is selected. Only the selected requests are finally executed. Thus, each target
node receives at most one request. These selected requests will be load balanced over the
PUs whp due to the random assignment of nodes to PUs.

This measure is also a prerequisite for removing the fagtan Section 6—now we
can insert the shortcuts from Section 3.1 without second thoughts about increasing the
maximum degree of the graph.

Theorem 16.The single source shortest path problem for directed graphs aitlodes,
m edges, maximum path weight maximuma-sizel,, andn, andm, defined as in
Section3.1can be solved on a CRCW PRAM in til@e%lA logn) and workO(n + m +

na+ma+ %ZA Iogn) Whp

Proof (outline). We concentrate on load balancing the execution of requests. The
remainder of the parallelization works as in Section 4. What makes executing requests
more difficult than generating them is that the in-degree of a node does not convey how
many requests will appear in a particular phase. If some targetinisdmntained in many
requests of a phase then it might even be necessary to set aside several processors to deal
with the request fop.

Instead of the brute-force randomized dart-throwing as in Section 4.1, we use an explicit
load balancing which groups different requests for the same target and only executing
the strictest relaxation. On CRCW PRAMSsogping can be done efficiently using the
semi-sorting routine explained in Lemma 17. Then we can use prefix sums to schedule
LpIReqw)|/|Reqd] PUs for blocks of size at leafiReqd/p and to assign smaller groups
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with a total of up to|Req/p requests to individual PUs. The PUs concerned with a group
collectively find a request with minimum distance in tir®¥|Req/p + log p) and then
relax it in constant time. Summing over all phases yields the desired bound.

Figure 6 outlines a fast parallelization of the procedure ‘relaxRequest’ and Fig. 7
provides an illustration.

Lemma 17.Semi-sortingk records with integer keys, i.e., permuting them into an array
of sizeK such that all records with equal key form a consecutive block, can be performed
intime O(K /p +logK) on a CRCW-PRAM wh.

ProcedurerelaxRequests(Req)
semi-sort ‘Req’ using as key for requestv, x)
foreach block Reqfv) = {(w, x) € Req of requests for node dopar
schedule maid, | p|Reqw)|/|Red |} PUs
(* possibly several small blocks per PU (prefix sums) *)
y:=min{x: (w,x) € Reqw)}
relaxw, y)

Fig. 6. Load balanced edge relaxation using semi-sorting.

5

i
deleted nodes generated  after semi—  selected transferred to
with adjacency lists  requests sorting requests target processors

[i]J) request for a relaxation of edge (i,j)

Fig. 7. Load balancing for generating and performing requests: Requests are denoted by a box for the source node
and a circle for the target node, colors are used to code node indices. The processors cooperate in building the
total set of requests: Large adjacency lists are handled by groups of PUs. Subsequently, the generated requests
are grouped by target nodes using semi-sorting. Then superfluous requests are filtered out, and the remaining
reguest are sent to the processors which host the appropriate bucket structures. Without the balancing, processor
Po would be over-loaded during the generation, and proceBsavould receive too many requests.

8 For this lemma whp is defined as a functionkof
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Proof. First find a perfect hash functiohn: V — 1..c¢K for an appropriate constant

Using the algorithm of Bast and Hagerup [10] this can be done in @€ /p + log p)

(and even faster) whp. Subsequently, we apply a fast, work efficient sorting algorithm for
small integer keys such as the one by Rajasekaran and Reif [76] to sort by the hash values
intime O(K/p +1ogK) whp. O

6. Finding shortcuts

In this section we explain how the multiplicative factarin Theorem 16 can be moved
to an additive term which is independent of the maximum path ledgty explicitly
inserting the shortcut edges between node pair€ jnas mentioned in Section 3.1.
Shortcuts are found by exploring-paths emanating from all nodes in parallel. This is
affordable for random edge weights because we know that there are only few gimple
paths. Furthermore, a lot of parallelism is available. The only additional complication is
that we have to make sure that only simple paths are explored. This can be achieved by
maintaining a hash table of connections already found and keeping only the shortest one
found.

Theorem 18.Letn’, (m'y) denote the number afimple A-paths(plus a light edgeand
let!’, denote the number of edges in the longest simpfeath. There is an algorithm which
inserts an edgéu, v) with weightc(u, v) = dist(u, v) for each shortest paty, . .., v) with
dist(u, v) < A usingO(!, logn) time andO(n 4+ m +n’, +m’,) work on a CRCW-PRAM
whp.

Note thatn, counts node pairs wherea$, counts simple paths. On some graphs
we may haven’, > n,. However, often the two ways of counting paths make no big
difference. In particular, our bounds for random edge weights from Section 3.2 (except
the sharp concentration results) also apply to the primed quantities. We get the following
improved time bounds by adding the bounds from Theorem 18 and the time bounds from
the previous sections taking into account that gw= O(1).

Corollary 19. The single source shortest path problem for directed graphs avitbdes,
m edges, maximum path weightandnr’,, m’,, I’; as defined in TheorefB can be solved
on a CRCW PRAM in tim&((!’, + L/A)logn) and workO(n + m + n’y + m’y) whp.
For random edge weights, maximum in-degree and out-degree athaostA = ©(1/d)
we get expected tim@(d L logn) and expected worl (n + m). For random graphs with
random edge weights and edge probabilityn, @ (1/d)-stepping with shortcuts works in
expected tim&(log?n) and expected worl (n + m).

Assume for now that shortcuts are already present. Figure 8 describes a vauant of
stepping which exploits their existence. Classifying edges as light or heavy is no longer

9A simple A-path is aA-path on which all nodes are pairwise distinct.
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E := E UfindShortCutsf)

foreach v € V dotent@) := co (* Unreached *)

relax(s, 0); i :=0 (* Source node at distance 0 *)

while —isEmpty(B)do (* Some queued nodes left *)
i:=min{j >i: B[j]# 0} (* Smallest nonempty bucket *)

foreach (v, w) € B[i] do
if tent(v) + c(v, w) < (i +1)A then
relax, tent(v) + c(v, w)) (* Intra-bucket edge *)
foreach (v, w) € B[i] do
if tent(v) + c(v, w) > (i +1)A then
relaxw, tent(v) + c(v, w)) (* Extra-bucket edge *)

Fig. 8. High levelA-stepping SSSP algorithm which assumes the presence of shortcut edges.

important for the shortest path search itself. By explicitly treating intra-bucket edges
(source and target reside in the same bucket) first, each edge is relaxed at most once: After
buckets 0 througl — 1 have been emptied, a single relaxation pass through the edges
reaching fromB[i] into B[i] suffices to settle all nodes now B[i]. After that, B[i] can

be emptied by relaxing all edges reaching ouB@f] once.

Figure 9 outlines a routine which finds shortcuts by applying a variant of the Bellman—
Ford algorithm to all nodes in parallel. It solves an all-to-all shortest path problem
constrained taA-paths. The shortest connections found so far are kept in a hash table
of sizeO(m’,) (we can use dynamic hashing if we do not know a good bounda:fgy.

This table plays a role analogous to that of {enh the main routine ofA-stepping. The
set Q storesactiveconnections, i.e., triple&:, v, y) wherey is the weight of a shortest
known path fromu to v and where pathg, ..., v, w) have not yet been considered as
possible shortest connections franto w with weighty + ¢(v, w). In iterationi of the

main loop, the shortest connections usirggiges are computed and are then used to update
‘found.’ Using similar techniques as in Section 5, this routine can be implemented to run
in O, logn) parallel time usingd(n + m + n'y + m',) work: We need’, iterations
each of which takes tim&(logn) and workO(]Q’|) whp. The overall work bound holds

Function findShortcutsf) : set of weighted edges

found : HashArrayy x V] (* return oo for undefined entries *)
Q0 :={(u,u,0:ueV} (* (start destinationweight *)
Q' : MultiSet
while Q0 # ¥ do

Q' =0

foreach (u, v, x) € Q dopar

foreach light edge(v, w) € E dopar

0 =0 U {(u,w,x +c(v,w))}
semi-sortQ’ by common start and destination node
Q:={(u,v,x): x=min{y: (u,v,y) € Q'}}
Q:={(u,v,x)e Q: x <A Ax <found(u, v)]}
foreach (u, v, x) € Q dopar found («, v)] := x
return {(u, v, x): found(u, v)] < oo}

Fig. 9. CRCW-PRAM routine for finding shortcut edges.
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since for each simple\-path(u, ..., v), (1, v) can be a member ad only once. Hence,
Yilol<n+n)yand)’; |Q'|<n+m,.

7. Determining A

In the case of arbitrary edge weights it is necessary to find a step widthich is large
enough to allow for sufficient parallelism and small enough to keep the algorithm work-
efficient. Although we expect that application specific heuristics can often give us a good
guess forA relatively easily, for a theoretically satisfying result we would like to be able
to find a goodA systematically. This can be done by starting with a small valua tfat
is certain to be save and then iteratively doulilentil there are too many-paths. The
previous value ofA is then a good choice fat stepping.

At the first glance, it seems that lagcalls to the procedure findShortcuts from Fig. 9
would be necessary to find. But we will see now that the same can be done with
linear work. We now outline an algorithm that while exploringpaths already prepares
information needed for an exploration ofA\Zpaths. When the next iteration is started, it
only has to continue the exploration from the previous phase. By continuously monitoring
the amount of work performed, the search can be stopped wiheas become too large to
finish an iteration.

We now explain more details assuming that the adjacency lists have been preprocessed
to bepartially sorted Let Ag := min.cg c(e) and assumé that Ag > 0. The adjacency
lists are organized intblocks of edges with weight 24¢ < c(e) < 2/t1Aq for some
integer . Blocks with lighter edges precede blocks with heavier edges.

Theorem 20.Letn’,, m’,, andl’, be defined as in Theoreh8 and consider an input with
partially sorted adjacency lists. For any constantthere is an algorithm which identifies
a step widthA, such that'y +m'y <o - (n+m), andnzzm + m’(zm > « - (n + m) which
can be implemented to run ((’; + logA/Ao) logn) time usingO(n + m) work whp.

The basic idea is to reuse the procedure findShortaytet Fig. 9 but to divide the
computation intgphasesIn phase (0 <i < log(max.cg c(e))/Ag) We setAgqyr = 2/ Ag
and find all connection@t, v, x) with Acyr < x < 2Acyr, 0< i < log(Mmax.cg c(e))/ Ag.

In order to remain work efficient, a number of additional measures are necessary
however. Since this routine ‘findDelta’ contains a number of technical details, we confine
the pseudo code to Appendix A and only outline the changes compared to the routine
‘findShortcuts’ from Fig. 9 here. Most importantly, we have a buckebed-list 7. 7'[i]
stores a list of entrie&t, v, x, b) where(u, v, x) stands for a connection fromto v with
weight x and b points to the first block in the adjacency list ofwhich may contain

10 The result can be modified for the case when weight 0 edges are allowed.

11 This preprocessing can be done efficiently sequentially. Since it is also trivially parallelizable on a node-by-
node basis, we get a good parallel preprocessing algorithm for thepcas®(n/d). Otherwise, we know no
algorithm which is always better than sorting. Sorting introduces a f&ttogn) work overhead which can be
amortized over multiple sources.
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edges(v, w) with 2/ Ag < x 4 c(v, w) < 2- 2/ Ag. (Note that the number of buckets may
be arbitrarily large; in this case, we store the buckets in a dynamic hash table and only
initialize those buckets which actually store elements.)

At the starting of phase, for each entry(u, v, x, b) of T[i], the adjacency list o
is scanned beginning at bloékuntil a block is encountered which cannot produce any
candidate connections for bucketA new entry of the todo list is produced for the first
bucketk > i for which it can produce candidate connections. The candidate connections
found are used to initialize®’.

Both this initialization step and the iteration ghcan produce candidate connections
whose weights reach into buckiet- 1. After removing duplicates and longer connections
than found before, we therefore split the remaining candidates into the new cont@nt of
and a seQnext Storing connections with weight in buckiet- 1.

At the end of phasg, when Q finally remains empty, we create new entries in the todo
list for all connections newly encountered in phasén order to do that, we keep track
of all new entries into ‘found’ using two sefsand Shext for connections with weights in
bucketi andi + 1, respectivelySnext is used to initializeS in the next phase.

The total number of connection-edge pairs considered is monitored so that the whole
procedure can be stopped as soon as it is noticed that this figure exceeds m). At
this time, the entries of ‘found’ constitute at least all simpde,,,/2)-paths. Thus, taking
A := Acyr/2 as the final step width, it is guaranteed that the number of reinsertions and re-
relaxations in a subsequent application of thestepping will be bounded b (n + m).

On the other handv,’(ZA) + mizm >a-(n+m).

Using an analogous argument as in Section 6 for finding shortcuts it turns out that the
search forA can be implemented to run i((!, 4+-log A / Ag) logn) time usingO(n +m)
work wherel’, denotes the number of edges in the longest simpfeath.

8. Adaptation to distributed memory machines

After describing our machine model, we proceed to analyze a distributed memory
version of the simple algorithm from Section 4.1 in Section 8.1. We refine it for random
graphs in Section 8.2 and in Section 8.3, a general algorithm with more parallelism is
introduced.

Consider the following abstract machine model: TherepaRdJs numbered 0 through
p — 1 which are connected by a communication network. L@t i ng (k) denote the time
required to routek constant size messages per PU to random destinationg§; &at(k)
bound the time to perform a (possibly segmented) reduction or broadcast involving a
message of length and assume thao | (x) + Teor 1 (¥) < Teor 1 (D) + Teol 1 (x + y),

i.e., concentrating message length does not decrease execution time. The analysis can focus
on finding the number of necessary basic operations. The execution time for a particular
network or abstract model is then easy to determine. For example, in the BSP model
[63,92] we can substitut& out i ng(k) = Ol + (k + log p)g) whp and, using a pipelined
implementation of collective communicatioFso | (k) = O logp + gk). Note, that on
powerful interconnection networks like multi-ported hypercubes we can achieve a time
O(log p + k) whp for Ty out i ng (k) andTcor | (k).
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We assume that the input is distributed over the local memories of the PUs such that
each PU hold®)(n/p) nodes. An adjacency list with edges is evenly distributed over
[kp/m] consecutive PUs. The nodes can then be redistributed using a hash functipn ind
which we assume to be computable in constant time. (Essentially the same assumptions
are made for efficient PRAM simulation algorithms [92, Section 4.3] and this is certainly
warranted for the simple hash functions used in practice.)

8.1. Adapting the simple algorithm

The PRAM algorithm from Section 4.1 is already almost a distributed memory
algorithm. The hash function irid) replaces the index array used in the PRAM algorithm.
The dart throwing process for assigning requests can be replaced by simply routing a
requesiw, x) to PU indw).

An analysis similar to the PRAM case yields the following bound:

Theorem 21.The single source shortest path problem for directed graphsmitbdes
edges, maximum in-degree and out-degfeenaximum path weight, maximuma-size

IA andm 4 defined as in SectioB.1 can be solved on a distributed memory machine with
p=0@mA/(dloL)) PUs in time

L
O(Vﬁ + Trouti ng(m) + Tcol | (M) + dlAz(TcoI 1 (D + Trouti ng(l))) whp
wherem=n+m-+na+mua/p.

Note, that on powerful interconnection networks like multi-ported hypercubes we get
the same asymptotic performance as our CRCW-PRAM algorithm.

8.2. Improvements for random graphs

As in Section 4.2 we use the special case of random graphs as an opportunity to
introduce fast parallel algorithms for handling large adjacency list. In a distributed memory
setting we cannot dynamically schedule outgoing edges between the PUs using prefix
sums as we did for PRAMs in Section 4.2. Instead, we introduce processor groups of
size 2, 0< i < [logP]. Each processor is member in one group of each size. Now
adjacency lists are not assigned to random processors as before but to random processor
groups. These groups can efficiently cooperate using pipelined collective broadcast and
reduction operations. Similarly, ip > n, groups of processors cooperate to find the
smallest incoming relaxation requests.

Theorem 22.The SSSP on random graphs frdbin, d/n), maximum path weighk,
maximumA-sizel, andn +ma = O(n + m) defined as in SectioB.1 can be solved on
a distributed memory machine wigh= O((n + m)((L/A + logn)l»)) PUs in time
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n+m n+m n+m
O( + Trouti ng(—> + Tcol | (—>
V4 V4 P

L
+ IAZ (Tcol 1 (1) + Ty outi ng(l))) whp

In particular, Corollary 15 also transfers and for some distributed memory machines
with powerful interconnection network we again get the same bounds aSR@W-
PRAMSs.

We do a somewhat more detailed analysis here than for the corresponding result in
Section 4.2 since Theorem 22 will not be fully superseded by a later result and because
the techniques used here are also applicable to CRCW-PRAMs (whetemized dart
throwing replaces routing).

Scanning adjacency lists to generate requests is load balanced using a static assignment
of edges to PUs: An adjacency list of size outdegreés collectively handled by aaut-
group of PUs. Out-groups are selected as follows: W.l.0.g., assumepthata power
of two minus one and the PUs are logically arranged as a complete binary tree. If
outdegre&) > p then all PUs participate in's out-group. Otherwise, a subtree rooted at a
random PU is chosen which is just large enough to accommodate one edge per PU, i.e., ifit
contains Fogoutdegre)+11 _ 1 nodes. Requests for a bucket can now be generated by first
sending the tentative distance of the node®i] to the roots of out-groups responsible
for them. (We will later see where this information comes from.) Then, the PUs pass all
the node-distance pairs they have received down the tree in a pipelined fashion and do the
same for the distances of the nodes received from above.

Now consider a fixed leaf Py for a fixed iteration of the algorithm. (Since interior
tree-nodes pass all their work downwards, interior PUs have no more work to do than
a leaf node.) LetX; := 1 if PU j is part of the out-group of a node expanded in
this iteration andX; = 0 otherwise. We hav®[X; = 1] = 2~"® if the root of the out-
group of nodei is h(i) levels away from the root of the PU-tree. The total number of
nodes PUj has to work on isY := Zle X; if k is the number of nodes expanded in
the current iteration ang[Y]= )", 27"®. By the definition of the size of subtrees, we
getE[Y] = O(K/p) if K is the total number of edges leaving nodes expanded in this
iteration. Using a Chernoff bound with nonuniform probabilities [72, Theorem 4.1], it
is now easy to see that = O(K/p + logn) whp. Since the communication pattern is
just a slightly generalized form of a broadcast, distributing the tentative distances can
be done in timeD(T;o | (K/p + logn)) whp. Summing over all iterations we get time
O(Tgor1 ((n+m)/p +logn) + Teor | (L)L/A). Generating the requests is then possible
using local computations only.

Ford = O((L/A + logn)l4 logn), the analysis in Section 4.2 can be applied to see
that the random graph structure ensures good load balancing. Otherwise, we would like to
apply more tham PUs. Then, there is no need for> n explicit local bucket structures any
more. Rather, we organize the PUs into in-group$gfn| PUs—one for each node and
no hash function is needed any more. Requ@sis) are now routed to random members
of the in-group forw and Chernoff-bounds ensure good load balancing. At the end of each
phase, a minimum reduction for each in-group determines the value used for ralaxing



U. Meyer, P. Sanders / Journal of Algorithms 49 (2003) 114-152 145

8.3. A faster algorithm using shortcuts

This section outlines a distributed memory implementation of the simp#tepping
algorithm with shortcuts from Fig. 8. This implementation works for arbitrary graphs.
We limit ourselves to the shortest path search itself and only note that preprocessing can
be done (somewhat inefficiently) by implementing semi-sorting using ordinary sorting
or using a slower yet work efficient algorithm requiri®(7; out i ng(n€)) time for
any positive constant. Both alternatives yield a work-efficient algorithm for powerful
interconnection networks if the preprocessing overhead can be amortized over sufficiently
many source nodes.

Recall that the additional difficulty compared to random graphs is that we have to
actively load balance incoming relaxation requests in the case of arbitrary graphs. This is
more difficult than balancing outgoing requests since the number of requests for a node is
not predictable. The semi-sorting routine we used in the PRAM algorithm does not transfer
to a distributed memory setting. We circumvent semi-sorting by performing relaxations
lazily at the last possible moment. Since edges need to be relaxed only once in a graph
with shortcuts, performing relaxations becomes similar to generating requests because the
total number of relaxations for a node is at most its in-degree.

Theorem 23.Consider a directed grapty with » nodes;» edges, maximum path weight
L andn, ma, L4 as defined in Sectiagd. 1 If G has been augmented with shortcut edges
and for each edgév, w), the in-degree ofv is known, then the single source shortest path
problem can be solved in time

L
O(Vﬁ + Trouti ng(m) + Tcol | (m) + Z(Tcol I (1) + Trouti ng(|09”))) whp,

on a distributed memory machine withPUs forin = (n +m +na +ma)/p any given
source nods.

Scanning adjacency lists to generate requests can be done as in Section 8.2. The more
difficult part is to assign the requests to nodes and schedule PUs for performing the
relaxations.

The idea for assigning requests is to postpone the relaxation of an edge until the latest
possible moment—just before the bucket of the target node is emptied. Since edges are
relaxed only once, it pays to allocate iargroupof size Z'0d(indegreen)+11 _ 1 for nodev
analogously to the way out-groups are allocated. Each PU maintains an additional bucket
structureB, for the nodes for which it is part of the in-group. Requests are routed to a
preassigned position in the in-group, but this information is only used to place the node
into B,. So, after iteration — 1 is computed, the content d#[i] is not yet known.
Rather, we first have to fin@[i] = |J B,[i]. This can be done locally for each in-
group using a pipelined tree operation which is the converse of the operation used for
broadcasting in the out-groups. (Each PU maintains a hash table of nodes already passed
up the tree.) Then, the result is broadcast to all PUs in the in-groups so that from now on,
redundant entries of nodes in buckets beysiid can be deleted. Also, edges which have
not received a request yet are marked as superfluous. Requests ending up there in later
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iterations will simply be discarded. Finally, the actual global minima are computed using
another pipelined reduction operation. Now the heads of the in-groups are ready to send
the tentative distances of nodesAfi] to the heads of the out-groups. The analysis of these
tree-operations is analogous the analysis for the out-groups in Section 8.2

9. Simulations and implementations

Simulations of different algorithm variants played a key role in designingahe
stepping algorithm. Here we report a few results obtained for random graphs with random
edge weights and without shortcuts since they give a feeling for factors hidden behind
our asymptotic analysis. Reachable nodes could be accessed by paths of mkﬁ@ﬁt 2
or shorter. Figure 10 shows the tradeoff between the number of phases and reinsertions
for a particular graph size and different edge probabilities. Interestingly, the number
of phases needed seems to beCldogn) even though our analysis only guarantees
O(log®n/loglogn). For example, forA = 4/d andd > 2 we never encountered more
than 5Im phases, the number of reinsertions was bounded ®:0The tested graphs
ranged from 18 up to 1% nodes and comprised up to B0° edges.

Successfully implementing a linear work algorithm which requires a linear number of
tiny messages with irregular communication pattern is not easy. However, for sraad
largen, a machine with high bandwidth interconnection network and an efficient library
routine for personalized all-to-all communication can do the job. We have implemented
a simple version of the algorithm for distributed memory machines and radd@gular
graphs using the library MPI [82]. Tests were run on an INTEL Paragon with 16 processors.
Forn = 21° nodes and = 3, speedup 2 was obtained against the sequentiastepping
approach. The latter in turn is.Btimes faster than an optimized implementation of
Dijkstra’s algorithm. Due to the increased communication costs, our results on dense
graphs are slightly worse: for = 216 andd = 32 the speedup of paralled-stepping
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Fig. 10. Number of phases and reinserted nodes usistepping under different values af= c/d. All tests on
graphs fromD (65536 d/n), d = 3, andd = 10.
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compared to its sequential counterpart was,1# sequentialA-stepping was B times
faster than Dijkstra’s algorithm.

We also looked for other ways of determining the gebf nodes to be deleted in a
phase. We have made experiments whHe&ieis some fraction of the total priority queue
size | Q|. In our simulations this works as well &(1/d)-stepping for random graphs
with |R| = ©(]Q]/log|Q|), for random planar graphs we could even (Be=|Q|/2. We
also tested this approach on real world graphs and edge weights: starting with a road-map
of a town ¢ = 10, 000) the tested graphs successively grew up to a large road-map of
Southern Germanyn(= 157, 457). Good performance was found f®| = @ (|Q|%/%).

While repeatedly doubling the number of nodes, the average number of phases (for
different starting points) only increased by a factor of abaft for n = 157,457 the
simulation needed 1178 phases, the number of reinserts was boundé&d by 0

10. Discussion

We have developed a parallel algorithm for the shortest path problem which works
for arbitrary directed graphs. How many processors can be used efficiently depends on
parameters of the graph; most prominently on the ratiad between its maximal path
weight and a step width with the property that there is at most a linear number of shorter
connections.

We have shown that can easily be chosen for independent random edge weights. An
example for dependent edge weights are random geometric géagihs wheren nodes
are randomly placed in a unit square and each edge weight equals the Euclidean distance
between the two involved nodes. An ed@e v) is included if the Euclidean distance
betweer: andv does not exceed the parameter [0, 1]. Random geometric graphs have
been intensively studied since they are considered to be a relevant abstraction for many
real world situations [28,80]. Taking= @ (,/log(n)/n) results in a connected graph with
m = O (nlogn) edges and. = O(1) whp. For A = r the graph already comprises all
relevantA-shortcuts such that we do not have to explicitly insert them. Consequently our
PRAM algorithm runs irO((1/r) logn) parallel time and perform®@(n + m) work whp.

We believe that the parametégsand!’, which indicate the number of edges drpaths
the algorithm needs to traverse, are less important. For graphs ihanel!’, do matter,
we could further diminish their influence by speeding up the introduction of shortcuts using
the pointer doubling technique, i.e., by introducing the new shortcuts found in one phase
of Algorithm 9 after each phase. In this wa9(log!’,) phases rather tha@ (/’;) would
be sufficient. Even a careful implementation of this idea might be slightly work-inefficient
(polylogarithmic factors) but as for the distributed memory algorithm, the preprocessing
could be amortized over multiple sources.

The main focus of this paper is a theoretical one, namely, to devise parallel shortest
path algorithms which exhibit high parallelism for a large class of graphs. However, our

12 our current implementation does not distinguish between heavy and light edges. This increases the
communication overhead. Therefore, we expect somewhat higher speedups for an improved implementation
which is under development.
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experiments indicate that at least the simple algorithm from Section 4.1 may also be of
practical use for large graphs and a moderate number of processors. The extreme case is
sequentialA-stepping which can be a practical improvement since it needs no priority
gueue data structure and is more generally applicable than Dial’s algorithm or Dinitz’
improvement [30]. We have started an experimental study on parallel implementation
which explores additional optimizations like partitioning the graph to increase locality and
to find shortcuts efficiently for smali. The ultimate goal is to achieve useful speedups on
real machines using graphs taken from real world problems, e.g., street graphs.

Inrecentwork [66] it was shown how th&-stepping idea can be augmented by adaptive
bucket-splitting, thus yielding the first sequential SSSP algorithm with provably linear
average-case time for arbitrary directed graphs with random edge weights.
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Appendix A. Pseudo code for findDelta’

Function findDelta() : step width

found : HashArrayy x V] (* return oo for undefined entries *)
Q:={(u,u,0): ueV} (* (start destinationweight *)
T[0]:=0 (* (start destinatiopweight block) *)
S:=0 (* remember new connections found *)
Acur:= Ag :=Min,cg c(e) (* current step width *)

Q' =0 : MultiSet
for i :=0to [log(max.cg c(e)/Ag)] do
Snext:=9; Onext: =1
foreach (u, v, x, b) € T[i] dopar (if too many opseturn Acyr/2)
foreachedge(v, w) of blockb in v's adjacency listlopar
Q=0 U {(u, w, x +c(v,w))}
j = llog((x + c(first edge of block + 1 in v's adjacency list)/ Ag) |
T[j1:=T[j1 Y {(u,v,x,b+ 1))}
while Q # ¢ do
foreach (u, v, x) € Q dopar (if too many opseturn Acyr/2)
foreachedge(v, w) € E havingc(v, w) < Acyr dopar
Q=0 U {u,w,x+c, w)}
semi-sortQ’ by common start and destination node
H:={(u,v,x): x=min{y: (u,v,y) € Q'}}
H :={(u,v,x) e H: x <found (u, v)]}
foreach (u, v, x) € H dopar
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if x < Acurthen
0:=0 U {(u,v,x)}
if found(u, v)]=ocothen §S:=S U (u,v)
else
Onext:= Qnext U {(u, v, x)}
if found (u, v)] = oo then Shext:= Snext U (u, v)
found (u, v)]:=x
Q=0
od
foreach (u, v, b) € S do
b :=first block inv’s adj. list having edges heavier than,
x :=found (u, v)]
j = log((x + c(first edge of blocl in v's adjacency list)/Ag) |
T[j1:=T[j1V (u,v,x,b)

O := Onext, S := Snext
Acur:=2Acur
return max.cg c(e)
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