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Abstract

The single source shortest path problem for arbitrary directed graphs withn nodes,m edges and
nonnegative edge weights can sequentially be solved usingO(n · logn+ m) operations. However
no work-efficient parallel algorithm is known that runs in sublinear time for arbitrary graph
this paper we present a rather simple algorithm for the single source shortest path proble
new algorithm, which we call Delta-stepping, can be implemented very efficiently in sequ
and parallel setting for a large class of graphs. For random edge weights and arbitrary grap
maximum node degreed, sequential∆-stepping needsO(n+ m + d · L) total average-case time
whereL denotes the maximum shortest path weight from the source nodes to any node reachabl
from s. For example, this means linear time on directed graphs with constant maximum degre
best parallel version for a PRAM takesO(d · L · logn+ log2 n) time andO(n+m+ d · L · logn)

work on average. For random graphs, evenO(log2 n) time andO(n+m) work on average can b
achieved. We also discuss how the algorithm can be adapted to work with nonrandom edge
and how it can be implemented on distributed memory machines. Experiments indicate that
a simple implementation of the algorithm achieves significant speedup on real machines.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The single-source shortest-path problem(SSSP) is a fundamental and well-stud
combinatorial optimization problem with many practical and theoretical application
Numerous SSSP algorithms have been developed, achieving better and better asy
running times. Unfortunately, on parallel machines, fast and efficient SSSP compu
still constitute a major bottleneck. On the other hand, many sequential SSSP algo
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1 Partially supported by the IST Programme of the EU under contract number IST-1999-14186 (ALCOM
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with less attractive worst-case behavior perform very well in practice but there a
theoretical explanations for this phenomenon. In this paper we propose a simple
algorithm of the above kind that provably runs in linear average time for a large cla
graphs and at the same time allows efficient parallelization.

Let G= (V ,E) be a directed graph with|V | = n nodes and|E| =m edges, lets be a
distinguished vertex (“source”) of the graph, andc be a function assigning a nonnegat
real-valuedweight to each edge ofG. The objective of the SSSP is to compute, for e
vertexv reachable froms, the weight of a minimum-weight (“shortest”) path froms to v,
denoted by dist(s, v), abbreviated dist(v); theweight of a pathis the sum of the weight
of its edges. We set dist(u, v) := ∞ if v is unreachable fromu. The maximum shortes
path weightfor the source nodes is defined asL(s) := max{dist(s, v): dist(s, v) < ∞},
abbreviatedL. Finally, note the distinction between the weight of a path and thesize of a
pathwhich is defined to be the number of edges on the path.

Sequential shortest path algorithms commonly apply iterative labeling methods
on maintaining atentative distancefor all nodes; tent(v) is always∞ or the weight of
some path froms to v and hence an upper bound on dist(v). Tentative distances ar
improved by performingedge relaxations, i.e., for an edge(v,w) ∈ E the algorithm
sets tent(w) := min{tent(w), tent(v) + c(v,w)}. There are two major types of labelin
methods—label-settingand label-correcting. Label-setting algorithms, such as Dijkstra
algorithm [29] designate the distance label of one nodev as permanent (optimal, “settled
at each iteration. Hence, at mostn iterations are required. Label-correcting algorith
can relax edges of nonsettled nodes and may vary in the number of iterations nee
complete the computation: all labels are considered temporary (they may be cons
several times) until the final step, when they all become permanent. The best label-
algorithms have significantly better worst case bounds than that of any label-corr
algorithm. In spite of good practical performance [17,93], the power of label-corre
approaches for SSSP is hardly covered by theoretical average-case analysis.

We address the deficit described above by providing a simple sequential label-cor
algorithm whichprovablyachieves optimal linear time with high probability (whp)2 for a
large graph class with random edge weights. Our∆-stepping algorithm maintains eligib
nodes with tentative distances in an array of buckets each of which represents a d
range of size∆. During each phase, the algorithm removes all nodes of the first none
bucket and relaxes all outgoing edges of weight at most∆. Edges of higher weight ar
only relaxed after their respective starting nodes are surely settled. The choice of∆ should
provide a good trade-off between too many node re-considerations on the one ha
too many bucket traversals on the other hand. We show that taking∆=Θ(1/d) for graphs
with maximum node degreed andrandomedge weights uniformly distributed in[0,1], the
algorithm needsO(n+m+ d ·L) total average-case time whereL denotes the maximum
shortest path weight from the source nodes to any node reachable froms. For example
this means linear average-case time on arbitrary directed graphs with bounded c
degree.

2 With high probability(whp) means that the probability for some event is at least 1− n−β for any constant
β > 0.
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Large input sizes require algorithms that efficiently support parallel computing,
in order to achieve fast execution and to take advantage of the aggregate memory
parallel system. The parallel random access machine (PRAM) [36,47,58] is one of th
widely studied abstract models of a parallel computer. A PRAM consists ofp independen
processors (processing units, PUs) and a shared memory, which these process
synchronously access in unit time. Most of our parallel algorithms assume thearbitrary
CRCW (concurrent read concurrent write) PRAM, i.e., in case of conflicting write acc
to the same memory cell, an adversary can choose which access is successful. Eve
the strict PRAM model is only implemented on a few experimental parallel machine
the SB-PRAM [35] it is valuable to highlight the main ideas of a parallel algorithm with
tedious details caused by a particular architecture. Other, more realistic models lik
[91] and LogP [23] view a parallel computer as a collection of sequential processors
one having its own local memory, so-calleddistributed memory machines(DMMs). The
PUs are interconnected by a network that allows them to communicate by sendin
receiving messages. Communication constraints are imposed by latency, limited n
bandwidth and synchronization delays. In this article, we use the PRAM model to de
and analyze the basic structure of our parallel algorithm first, then we provide detai
conversion to DMMs.

A number of new SSSP algorithms has been invented to fit the needs of p
computation models. A fast and efficient parallel algorithm minimizes bothtime and
work (product of time and number of processors). Ideally, the work bound ma
the complexity of the best (known) sequential algorithm. Unfortunately, even on
stronger PRAM model, most of them perform significantly more work than their sequ
counterparts. Currently, there is no work efficient algorithm which achieves sublinea
on arbitrary graphs with nonnegative edge weights. Implementations on parallel com
mostly apply some simple kind of graph partitioning, and then each processor r
sequential label-correcting algorithm on its own partition. In between, the proce
exchange distance information. For certain input classes, some of these implemen
perform fairly well even though no speed-up can be achieved in the worst
However, thorough theoretical justification for the actually observed performance is la
missing.

Based on the sequential∆-stepping algorithm we give work-efficient extensions
PRAMs and distributed memory machines (DMMs). For random edge weights
expected parallel execution time can again be stated in terms of the maximum
degree and the expected maximum weight among all shortest paths in the grap
prove sublinear average-case time and linear average-case work for several graph
with random edge weights. In particular, we showO(log2 n) time andO(n+m) work on
average for random graphs with random edge weights.

In the following we will provide an outline of previous and related work. Then we
give an overview of our new algorithms, interpret the theoretical results, and sketc
organization of the article.
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1.1. Previous and related work

1.1.1. Sequential label-setting algorithms
The basic label-setting approach is Dijkstra’s algorithm [29]. It maintains a partitio

the node setV into settled, queuedandunreachednodes. Settled nodes have reached t
final distance value. Queued nodes have finite tentative distance and unreached nod
tent(v)=∞. Initially, s is queued, tent(s)= 0, and all other nodes are unreached. In e
iteration, the queued nodev with the smallest tentative distance is removed from the qu
and all edges(v,w) are relaxed, i.e., tent(w) is set to min{tent(w), tent(v)+ c(v,w)}. If
w was unreached, it is now queued. It is well known that tent(v) = dist(v) when v is
removed from the queue, i.e.,v is settled. Using Fibonacci heaps [37], Dijkstra’s algorit
can be implemented to run inO(n · logn+m) time. This constitutes the best known bou
in the standard model of computation, which forbids bit-manipulations of the edge we

A number of faster algorithms have been developed on the more powerful RAM
dom access machine) model which basically reflects what one can use in a progra
language such asC. Nearly all of these algorithms are based on Dijkstra’s algorithm
improve the priority queue data structure (see [78,85] for an overview). Thorup [8
has given the firstO(n + m) time RAM algorithm forundirectedgraphs with nonneg
ative floating-point or integer edge weights in{0, . . . ,2w − 1} for word lengthw. His
approach applies label-setting, too, but significantly deviates from Dijkstra’s algo
in that it does not visit the nodes in order of increasing distance froms but traverses a
so-calledcomponent tree. Unfortunately, Thorup’s algorithm requires atomic heaps [
which are only defined forn � 21220

. Hagerup [49] recently generalized Thorup’s appro
to directed graphs, the time complexity, however, remains super-linearO(n+m · logw).
The currently fastest RAM algorithm for sparse directed graphs is due to Thorup
and needsO(n+m · log logn) time. Alternative approaches for somewhat denser gra
have been proposed by Raman [77,78]: they requireO(m + n · √logn · log logn) and
O(m+ n · (w · logn)1/3) time, respectively.

Considering the algorithms which we present in this paper we review some
implementations of Dijkstra’s algorithm withbucket based priority queues. Buck
approaches are particularly interesting for smallintegeredge weights in{1, . . . ,C}: in its
simplest form the priority queue consists of a linear arrayB such that bucketB[i] stores
the set{v ∈ V : v is queued and tent(v) ∈ [i ·∆,(i+1) ·∆)}. The parameter∆ is called the
bucket width. For integer weights, taking∆= 1 ensures that any node in the first nonem
bucket can be settled [26]. The statement remains true for∆ � ∆0 = min{c(e): e ∈ E}
[25,30]. Hence, if∆ � ∆0, the resulting running time is bounded byO(m+ n · �C/∆�),
also for noninteger weights from[∆0,C]. Choosing∆ > ∆0 either requires to search
node with smallest tentative distance in the first nonempty bucket (e.g., by an add
heap [25]) or results in a label-correcting algorithm. The latter variant which is also c
the “approximate bucket implementation of Dijkstra’s algorithm” [2] comes close
the sequential version of our∆-stepping algorithm. The description in [2] provides
worst-case analysis forinteger weights, the average-case performance (in particula
nonintegeredge weights) is not considered.

Alternative bucket approaches include nested (multiple levels) buckets and/or buc
different widths [3,25]. The currently best worst-case bound for SSSP on arbitrarydirected
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graphs with integer edge weights in{1, . . . ,C} is O(m+ n · (logC)1/4+ε) expected time
for any fixedε > 0 [78].

1.1.2. Sequential label-correcting algorithms
The generic SSSP label-correcting algorithm repeatedly selects an arbitrary ede =

(u, v) that violates the optimality condition, i.e., tent(v) > tent(u) + c(e), and updates
tent(v) appropriately. The total running time depends on the order of edge relaxatio
the worst case it is pseudo-polynomial:O(n2 ·m · C) for integer weights, andO(m · 2n)

otherwise [2]. Improved label-correcting algorithms keep a setQ of nodes so that whenev
a distance label tent(v) decreases, thenv is added toQ. In each iteration, the algorithm
selects a nodeu from Q and examines its outgoing edges to update tentative distance
[17,41] for an overview). The classic Bellman–Ford version [11,34] implementsQ as a
FIFO-Queue and achieves running timeO(n ·m). Since then, none of the newly develop
label-correcting algorithms could asymptotically improve this worst-case bound. How
a number of experimental studies [17,25,27,42,44,57,71,93]showed that some recen
correcting approaches are much faster than Bellman–Ford and even frequently outp
label-setting algorithms.

1.1.3. Random edge weights and special graph classes
Average-case analysis of shortest paths algorithms mainly focused on theAll-Pairs

Shortest Paths(APSP) problem on thecompletegraph with random edge weights [21,3
52,70,79,83]. Mehlhorn and Priebe [65] proved that for thecompletegraph with random
edge weights every SSSP algorithm has to check at leastΩ(n · logn) edges with high
probability. Noshita [74] and Goldberg and Tarjan [46] analyzed the expected num
decreaseKeyoperations in Dijkstra’s algorithm; the time bound, however, does not imp
over the worst-case complexity of the algorithm.

Improved SSSP algorithms exist for special graph classes, e.g., there are line
approaches for planar graphs [53] or graphs with constant tree width [16].

1.1.4. PRAM algorithms
No parallel PRAM algorithm is known that executes withO(n · logn + m) work

and sublinear running time for arbitrary digraphs with nonnegative edge weights
O(n · logn+m) work solution by Driscoll et al. [31] (refining a result of Paige and Krus
[75]) has running timeO(n · logn). An O(n) time algorithm requiringO(m · logn) work
was presented by Brodal et al. [13]. These algorithms settle the nodes one by one
order of Dijkstra’s algorithm and only perform edge relaxations in parallel. Hence,
that method there is no possibility to break the worst-case time bound ofΩ(n). All other
known SSSP algorithms for arbitrary graphs trade running time against efficiency.

The algorithm by Han et al. [50] (based on [24]) implicitly solves the APSP problem
reducing the shortest path computation to matrix multiplications over semirings: it n
O(log2 n) time andO(n3 · (log logn/ logn)1/3) work. Applying randomized minimum
computations [40] on a CRCW PRAM, the algorithm can also be implemented t
in O(logn) time usingO(n3 · logn) work. Deterministically, it is possible to achiev
O(ε−1 · logn) time usingO(n3+ε · logn) work for an arbitrary constantε > 0. Furthermore
there is a randomized algorithm [61] for SSSP on sparse graphs with integral nonne
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edge weights summing toW . It requiresO(polylog(m + W)) time with m2 processors
Recently, Mulmuley and Shah [73] gave a lower bound ofΩ(logn) execution time for
SSSP on PRAMs without bit operations using a polynomial number of processors
lower bound even holds when the bit lengths of the edge weights are restricted to be
O(log3 n).

Several parallel SSSP algorithms are based on the randomized parallel bread
search (BFS) algorithm of Ullman and Yannakakis [90]. In its simplest form, the
algorithm first performs(

√
n · logn)-limited searches fromO(

√
n) randomly chosen

distinguished nodes in parallel. Then it builds an auxiliary graph of the distingu
nodes with edge weights derived from the limited searches. Based on the solut
an APSP problem on the auxiliary graph the distance values of nondistinguished
are properly updated. This simple BFS algorithm takesO(

√
n · polylog(n)) time using

O(
√

n · m · polylog(n)) work with high probability. A more involved version achiev
O(t · polylog(n)) time usingO((

√
n · m + n · m/t + n3/t4) · polylog(n)) work for any

t �
√

n whp.
Klein and Subramanian [62] extended the BFS idea of Ullman and Yannaka

weighted graphs. They gave a parallel randomized approximation scheme for(1+ ε)-
approximate single-source shortest paths computations that runs inO(

√
n · ε−1 · logn ·

log∗ n) time usingO(
√

n ·m · logn) work. Furthermore, they showed how to use the re
above in order to compute exact single-shortest paths with maximum path weightL by
solving a series of logL sub-instances. The algorithm takesO(

√
n · logL · logn · log∗ n)

time andO(
√

n ·m · logL · logn) work.
Similar results have been obtained by Cohen [19] and Shi and Spencer [81]. Re

Cohen [20] gave an(1+ ε)-approximation algorithm for undirected graphs that runs
polylogarithmic time and takes near linear work. Unfortunately, there seems to be n
to use it for exact computations by repeated approximations. Cohen also gave a SSS
rithm that takes polylogarithmic time andO((n+ n3·µ) · polylog(n)) work provided that a
O(nµ)-separator decomposition for the problem instance is provided as a part of the

More efficient parallel SSSP algorithms have been designed for special graph c
Here are some examples: Combining the data structure of [13] with the ideas from
gives an algorithm which solves the SSSP problem on planar digraphs with arb
nonnegative edge weights inO(n2ε + n1−ε) time andO(n1+ε) work on a CREW PRAM.
In contrast, the randomized algorithm of [61] requires planar graphs and integra
weights summing toW . It runs inO(polylog(m + W)) time with n processors. Work
efficient SSSP algorithms for planar layered graphs have been proposed by Subra
et al. [84] and Atallah et al. [7]. Furthermore, there is anO(log2 n) time and linear work
EREW PRAM algorithm for graphs with constant tree width [15].

Random graphs [12,33] with unit weight edges have been considered by Cle
et al. [18]: their solution is restricted to constant edge probabilities or edge proba
Θ(logk n/n) (k > 1). In the latter caseO(logk+1 n) time and optimalO(n · logk n) work
is needed on the average. Reif and Spirakis [79] bounded the expected diamete
giant component of sparse random graphs with unit weights byO(logn). Their result
implies that the matrix based APSP algorithm needsO(log logn) iterations on averag
provided that the edge weights are nonnegative and satisfy the triangle inequality.
and Rudolph [40] and Gu and Takaoka [48] considered the APSP problem with ra
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edge weights and showed that the standard matrix product algorithm can be implem
in O(log logn) time andO(n3 · log logn) work on average. Crauser et al. [22] gave crite
that divide Dijkstra’s algorithm into a number of phases, such that the operations wi
phase can be done in parallel; for random graphs with random edge weights, SSSP
solved inO(n1/3 · logn) time usingO(n · logn+m) work on average.

1.1.5. Distributed memory machines (DMMs)
PRAM algorithms can be emulated on distributed memory machines. The loss f

depend on the concrete parameters of the models, e.g., see [43] for emulation res
the BSP model. However, existing implementations [1,14,54–56,88] on parallel com
with distributed memory mostly do not use such emulations but apply some kin
graph partitioning where each processors runs asequentiallabel-correcting algorithm on
its subgraph(s). Heuristics are used for the frequency of the inter-processor excha
distance information, load-balancing and termination detection. Depending on the
classes and parameter choices, some of these implementations perform fairly we
though no speed-up can be achieved in the worst case. However, no theoretical a
case analysis is given.

1.2. New results

We propose and analyze sequential and parallel versions of a label-correcting alg
for SSSP. Our sequential∆-stepping approach is similar to the “approximate buc
implementation of Dijkstra’s algorithm” [17] in that it maintains eligible nodes w
tentative distances in an arrayB of buckets each of which represents a distance ra
of ∆. The parameter∆ is a positive real number that is also called the “step width
“bucket width.” Opposite to the algorithm of [17], our approach distinguisheslight edges
(which have weight at most∆) andheavy edges(c(e) > ∆).

Parallelism is obtained by concurrently removing all nodes of the first nonempty b
(the so-calledcurrentbucket) and relaxing their outgoing light edges in a single phas
a nodev has been removed from the current bucketB[i] with nonfinal distance value the
in some subsequent phase,v will eventually bereinsertedinto B[i], and the outgoing ligh
edges ofv will be re-relaxed. The remaining heavy edges emanating from all node
have been removed fromB[i] so far are relaxed once and for all whenB[i] finally remains
empty. Subsequently, the algorithm searches for the next nonempty bucket and proc
described above.

The performance of our approach depends on the choice of the step width∆. We analyze
this dependence both in terms of abstract graph parameters and in a more concrete
case setting.

1.2.1. Random edge weights
We assume independentrandomedge weights that are uniformly distributed3 in [0,1].

We show that the average-case overhead for re-insertions and re-relaxations is bou

3 The results can be adapted to other distribution functionsF , too. For example, it is sufficient ifF(0) = 0
andF ′(0) is bounded from above by some positive constant.
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O(n+m) if we choose∆=Θ(1/d) for graphs with maximum node degreed . We prove
that for maximum shortest path weightL :=max{dist(v): dist(v) <∞}, purely sequentia
Θ(1/d)-stepping needsO(n + m + d · L) total average-case time. Thus, SSSP can
solved in linear average-case time wheneverd · L = O(n +m). For example, this is th
case on arbitrary directed graphs with bounded constant degree.

A simple parallel version for a CRCW PRAM takesO(d2 ·L · log2 n) time on average
our best algorithm achievesO(d ·L · logn+ log2 n) time andO(n+m+d ·L · logn) work
on average. For several important graph classes with random edge weights,L is sufficiently
small, i.e.,d ·L · logn= o(n) with high probability, so that the parallel SSSP can be so
in sublinear time and linear work on average. For example, forr-dimensional meshes wit
random edge weights we haveL=O(n1/r ) whp and hence execution timeO(n1/r log2 n)

using linear work for any constantr whp.
We also consider random graphs [12,33] with random edge weights. We us

random digraph modelD(n, d̄/n) that was introduced by Angluin and Valiant [6]. A
instance ofD(n, d̄/n) is a directed graph withn nodes where each edge is pres
with probability d̄/n, independently of the presence or absence of other edges. H
each node has expected out-degree (and in-degree)d̄, and m = d̄ · n + o(n) whp if
d̄ � 1. For random graphs fromD(n, d̄/n) with d̄ � 2 and random edge weights, w
show L = O((1/d̄) · logn) whp. Together with the observationd = O(d̄ + logn) whp
this immediately yields an average-case bound ofO(log3 n) time andO(n + m) work.
Furthermore, we show that a modified version for random graphs only takesO(log2 n)

time andO(n+m) work on average (Corollary 19).
In Section 10 we also discuss the performance onrandom geometric graphswhich are

considered to be a relevant abstraction for many real world situations [28,80].

1.2.2. Arbitrary positive edge weights
The results presented above can be seen as concrete instantiations within a more

framework that does not necessarily assume random edge weights: call a path wi
weight at most∆ and without edge repetitions, i.e., every edge appears on the path a
once, a∆-path. Let C∆ denote the set of all node pairs〈u,v〉 connected by some∆-path
(u, . . . , v) and letn∆ := |C∆|. Similarly, defineC∆+ as the set of triples〈u,v′, v〉 such
that 〈u,v′〉 ∈ C∆ and(v′, v) is a light edge and letm∆ := |C∆+|. Furthermore, we kee
our definition for the maximum weight of a shortest path,L := max{dist(v): dist(v) <

∞}. Using these parameters we show that the sequential∆-stepping needs at mo
O(n+m+ n∆ +m∆ + L/∆) operations. The result for random edge weights mentio
above is obtained by provingn∆ +m∆ =O(n+m) whp for ∆=Θ(1/d).

For the parallel version we also need a bound on the total number of phases. The n
of phases for each nonempty bucket is bounded by one plus the maximum number o
that occur on any traversed∆-path: themaximum∆-sizel∆ is defined to be one plus th
maximum number of edges needed to connect any pair〈u,v〉 ∈ C∆ by a path of minimum
weight, i.e.,
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l∆ = 1+ max〈u,v〉∈C∆

min
{|A|: A= (u, . . . , v) is a minimum-weight∆-path

}
.

A simple parallelization of∆-stepping runs in timeO( L
∆
· d · l∆ · logn) and needs work

O(n+m+n∆+m∆+ L
∆
·d · l∆ · logn) whp. The respective average-case bound mentio

before follows by provingl∆ = O(logn/ log logn) whp for ∆ = Θ(1/d). We also show
that the factord can be removed from the execution time using more sophisticated
balancing algorithms.

A further acceleration can be achieved by a preprocessing that actively intro
shortcut edgesinto the graph, i.e., it inserts an edge(u, v) with weightc(u, v)= dist(u, v)

for each shortest path(u, . . . , v) with dist(u, v) � ∆. After shortcuts are present, the SS
algorithm needs at most a constant number of phases for each nonempty buck
n′∆ (m′

∆) denote the number ofsimple∆-paths (plus a light edge) and letl′∆ denote the
number of edges in the longest simple∆-path. We propose a shortcut insertion algorit
that needsO(l′∆ logn) time andO(n + m + n′∆ + m′

∆ + l′∆ · logn) work on a CRCW
PRAM whp. For random edge weights and∆ = Θ(1/d) the terms simplify as follows
n′∆+m′

∆ =O(n+m) andl′∆ =O(logn/ log logn) on average, thus resulting in our fast
SSSP algorithm withO(d ·L · logn+ log2 n) time andO(n+m+ d ·L · logn) work on
average.

Based on the shortcut insertion algorithm, we propose an efficient method which
the largest possible bucket width∆ that still ensures anO(n+m) bound on the overhea
for node reinsertions and edge re-relaxations.

1.2.3. Further results
Many of the results also transfer to distributed memory machines, and experiment

that already a simple implementation of the algorithm achieves significant speedup
machines.

Preliminary accounts of the results of the present paper have been published in [
Subsequently, it was shown that sequential SSSP on arbitrary directed graphs can b
in linear average-case time [45,66].

1.3. Overview

The rest of the paper is organized as follows: in Section 2, we introduce the∆-stepping
algorithm and analyze its basic properties including sequential execution time in Sec
Sections 4–8 develop parallel algorithms. The simple algorithms explained in Sec
are improved in Section 5 using more sophisticated load balancing algorithms. A f
acceleration is obtained in Section 6 by precomputing paths consisting of many short
Section 7 generalizes the algorithm to work with arbitrary edge weights by provid
parallel algorithm that finds a good value for the step width∆. In Section 8 we conside
a more practical distributed memory model withp processing units (PUs) connected b
network. Simulations and prototypical implementations described in Section 9 demon
that at least the simple variants of∆-stepping are quite practicable. A discussion of so
further possibilities for refinements in Section 10 concludes the paper.
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2. The basic algorithm

Our sequential∆-stepping algorithm shown in Fig. 1 resembles the “approxim
bucket implementation of Dijkstra’s algorithm” [17]. It maintain a one-dimensional a
B of bucketssuch thatB[i] stores the set{v ∈ V : v is queued and tent(v) ∈ [i ·∆,(i +
1) ·∆)}. The parameter∆ is a positive real number that is also called the “step width
“bucket width.” For maximum shortest path weightL, the arrayB must contain�L/∆�
buckets. However, by cyclically reusing empty buckets, alreadyb=maxe∈E�c(e)/∆�+ 1
buckets are sufficient. In that caseB[i] is in charge of all tentative distances in[(j · b+ i) ·
∆,(j · b+ i + 1) ·∆) for all j � 0.

In eachphase, i.e., each iteration of the inner while-loop, the algorithm remo
all nodes from the first nonempty bucket (current bucket) and relaxes alllight edges
(c(e) � ∆) out of these nodes. This may result in new nodes entering the current b
which are deleted in the next phase. Furthermore, nodes previously deleted from this
may bereinsertedif their tentative distance has been improved by the previous phase
relaxation ofheavyedges(c(e) > ∆) is not needed at this time since they can only re
in tentative distances outside of the scope of the current bucket, i.e., they will not
nodes into the current bucket.

Once the current bucket finally remains empty after a phase, all nodes in its di
range have been assigned their final distance values during the previous ph

foreach v ∈ V do tent(v) :=∞
relax(s, 0); (* Insert source node with distance 0
while ¬isEmpty(B)do (* A phase: Some queued nodes left (a)

i :=min{j � 0: B[j ] �= ∅} (* Smallest nonempty bucket (b) *
R := ∅ (* No nodes deleted for bucketB[i] yet *)
while B[i] �= ∅ do (* New phase (c) *)

Req:= findRequests(B[i], light) (* Create requests for light edges (d)
R := R ∪B[i] (* Remember deleted nodes (e)
B[i] := ∅ (* Current bucket empty *)
relaxRequests(Req) (* Do relaxations, nodes may (re)enterB[i] (f) *)

Req:= findRequests(R, heavy) (* Create requests for heavy edges (g
relaxRequests(Req) (* Relaxations will not refillB[i] (h) *)

Function findRequests(V ′, kind : {light,heavy}) : set of Request
return {(w, tent(v)+ c(v,w)): v ∈ V ′ ∧ (v,w) ∈Ekind)}

ProcedurerelaxRequests(Req)
foreach (w,x) ∈Reqdo relax(w, x)

Procedurerelax(w, x) (* Insert or movew in B if x < tent(w) *)
if x < tent(w) then

B[�tent(w)/∆�] :=B[�tent(w)/∆�] \ {w} (* If in, remove from old bucket *)
B[�x /∆�] :=B[�x /∆�] ∪{w} (* Insert into new bucket *)
tent(w) := x

Fig. 1. A sequential variant of∆-stepping (with cyclical bucket reusage). The sets of light and heavy edge
denoted byElight andEheavy, respectively. Requests consist of a tuple (node, weight).
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Subsequently, all heavy edges emanating from these nodes are relaxed once and
Then the algorithm sequentially searches for the next nonempty bucket.

For the sequential version, buckets can be implemented as doubly linked lists. In
or deleting a node, finding a bucket for a given tentative distance and skipping an
bucket can be done in constant time. Deletion and edge relaxation for an entire buc
be done in parallel and in arbitrary order as long as an individual relaxation is at
i.e., the relaxations for a particular node are done sequentially. If we want to use
parallelism, we can combine all relaxations for the same node to a single relaxatio
smallest new distance. We will give further details of the parallelization in Section 4.

2.1. Difficult inputs

The performance of∆-stepping crucially depends on the choice of the parameter∆. For
integer weights and∆= 1, ∆-stepping coincides with Dial’s implementation of Dijkstra
algorithm (e.g., [2, Section 4.6]).L buckets will have to be traversed, but no reinserti
occur. Even though the depth of the shortest path tree may be small, there are graph
L=Ω(n · logn+m) such that both sequential and parallel∆-stepping perform poorly.

On the other hand, for∆ � n ·maxe∈E c(e) our algorithm will exclusively use the firs
bucket, hence we obtain a parallel version of the Bellman–Ford algorithm which ha
parallelism since all edges can be relaxed in parallel. Ifk is the maximum depth of th
shortest path tree,k passes through the adjacency list of all queued nodes are suffi
Unfortunately, this may be quite inefficient compared to Dijkstra’s algorithm;Θ(km)

operations are needed in the worst-case.
The idea behind∆-stepping is to find an easily computable fixed∆ that yields a good

compromise between these two extremes. However, in particular for the parallel ve
this is not always possible.

Figure 2 provides an input withO(n) edges whereany fixed ∆ either leads toΩ(n)

phases orΩ(n) operations: TheL-part with long edge weights consists ofn′ = Θ(
√

n)

chains ofn′′ =Θ(
√

n) nodes. It is responsible forΘ(n) distance values that are interspac
by at lastn. TheS-part consists of a chain of sizen′′ where the last node spansΘ(n) single
nodes and has in-degreeΘ(n′′) from short-cuts along the chain. Thus, if∆ = o(n) then
Ω(n) different buckets must be inspected, forL, i.e., Ω(n) phases. On the other han
∆=Ω(n) leads toΘ(n′′n)=Θ(n1.5) operations due to re-relaxations in partS.

However, in Section 3 we give conditions on when∆ is “good” and it turns out that a
least for random edge weights, a good∆ is easy to find. In Section 7 we discuss how
find a good∆ for arbitrary nonnegative edge weights.

3. Analysis of the∆-stepping algorithm

The purpose of this section is to analyze∆-stepping on an abstract level that
independent of the machine model used thus producing tools that can be used
analysis of sequential, PRAM, and distributed memory implementations. Our an
proceeds in three stages in order to make the results adaptable to different graph
In Section 3.1 we consider the number of reinsertions (needed to bound the total n
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Fig. 2. Bad input graph for∆-stepping with fixed step width.

of operations) and the number of phases (needed to bound the parallel time) in te
parameters liked , L, and l∆ (as described in Section 1.2). Hence, we do not make
assumptions on the class of graphs investigated. Section 3.2 analyzes these co
for the case of random edge weights. Finally, Section 3.3 completes the analy
additionally assuming random graphs.

3.1. Reinsertions and progress

The setsC∆ andC∆+ as introduced in Section 1.2 play a key role in analyzing both
overhead and the progress of∆-stepping. The overhead compared to Dijkstra’s algori
is due toreinsertionsand re-relaxations, i.e., insertions of nodes which have previou
been deleted and relaxation of their outgoing edges. The following lemma bound
overhead.

Lemma 1.The total number of reinsertions is bounded byn∆ = |C∆| and the total numbe
of re-relaxations is bounded bym∆ = |C∆+|.

The proof is quite similar to the correctness proof of Dijkstra’s algorithm.

Proof. We give an injective mapping from the set of reinsertions intoC∆. Consider a
nodev which is reinserted in phaset . There must be a most recent phaset ′ � t when
v was deleted. Consider any shortest pathA(v) = (s, . . . , v′, . . . v) wherev′ is the first
unsettled node onA(v) immediately before phaset ′. Hence,v′ already has its fina
distance. Furthermore, sincev′ is at least as close tos asv bothv′ andv will be deleted in
phaset ′ −v′ is settled then whereasv is reinserted later in stept . In particular,v′ �= v. Note
that the partA′(v′, v)= (v′, . . . , v) of A(v) is a shortest path fromv′ to v. Since bothv and
v′ are deleted by phaset ′, A′(v′, v) is also a∆-path, i.e.,〈v′, v〉 ∈ C∆. Sincev′ becomes
settled, the reinsertion ofv in phaset can be uniquely mapped to〈v′, v〉.
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Similarly, each re-relaxation can be uniquely identified by a reinsertion plus a
edgee. ✷

The number of phases needed can be bounded as a function of the step width∆, the
maximum path weightL and the maximum∆-sizel∆:

Lemma 2.For any step width∆, the number of phases is bounded byL
∆

l∆.

Proof. The algorithm repeatedly removes all nodes from the current bucket and re
outgoing edges until the bucket finally remains empty. Then it proceeds with the
bucket. For maximum path weightL it has to traverseL/∆ buckets. Hence, in order t
prove the lemma it suffices to prove that at mostl∆ phases are required until any buck
remains empty. Consider any nodev �= s with dist(v) ∈ B[i] and let(s, . . . , v0, v1, . . . , vl =
v) denote a shortest path froms to v such thatv1 throughvl are the only nodes settled b
iterations ofB[i] and such thatl is minimal, i.e., among all the shortest paths tov choose
one with a minimal number of nodes inB[i]. By definition, before the first node remov
from bucketB[i], v0 must have been settled in a previous bucket. Hence, the edge(v0, v1)

has been relaxed with the proper distance value forv0, so thatv1 has already reached i
final distance. Therefore,v1 will be settled in the first phase for bucketB[i]. Similarly,
it can be concluded inductively that in phasej for bucketB[i], 1 � j � l, vj is settled.
Now, l cannot exceedl∆ since otherwise〈v1, vl〉 ∈C∆ would have no connection with les
thanl∆ edges, thus contradicting the definition ofl∆. So, afterl∆ iterations the last nod
in bucketB[i] must be settled. ✷

We now have enough information to determine the execution time of sequenti∆-
stepping in terms ofn, m, ∆, n∆, andm∆:

Theorem 3.Sequential∆-stepping can be implemented to run in timeO(n+m+L/∆+
n∆ +m∆).

Proof. We charge the operations performed by∆-stepping to one ofn nodes, one ofm
edges ofG, one of the at mostL/∆ empty buckets traversed, or to an element inC∆ or
C∆+. The time bound is established by showing that none of the mentioned object
more than a constant charge.

The loop control in lines (a) and (c) can be implemented in constant time by ke
counters of the buckets sizes and their sum. These costs can be charged to nodes
each iteration at least one node is settled.

Finding the next nonempty bucket in line (b) can be charged to empty buckets e
which is only considered once.

Identifying light requests in line (d) and doing the relaxations in line (f) needs con
work for each re-relaxation and reinserted node if anO(m+ n) time preprocessing phas
orders the adjacency lists into sublists for light and heavy edges, respectively. Node
deleted from a bucket in line (e) can be remembered by storing them in a list. In or
avoid duplicates in the list we use a boolean arrayI [·] for the node indices, initialized wit
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0 and setI [i] := 1 when nodei is deleted for the first time. By Lemma 1 these operati
can be charged to elements inC∆ andC∆+.

The work done for relaxing heavy edges in lines (g) and (h) can be charged to
and edges since heavy edges are relaxed only once.✷

We get a linear time algorithm ifn∆+m∆+L/∆=O(n+m). For a parallel algorithm
the goal is to find a∆ which is small enough to preserve this work efficiency yet la
enough to yield sufficient parallelism.

A very conservative approach to choose∆ goes back to Dinitz (and, independent
Denardo and Fox) [25,30]. They observe that there are no reinsertions if we choose t
width ∆ just below the minimum edge weight and we havel∆ = 1 in this case. Anothe
way to ensure a smalll∆ (l∆ � 2) it to add a “shortcut” edge(v,w) whenever〈v,w〉 ∈ C∆.
We will discuss this approach in Section 6.

3.2. Random edge weights

This section is devoted to proving that for graphs with maximum node degreed and
random edge weights uniformly distributed in[0,1], ∆=Θ(1/d) is a good step width in
the sense that∆ is small enough to limit the overhead of reinsertions and re-relaxation
large enough to yield sufficient parallelism.

The results also hold for random graphs fromD(n, d̄/n) with random edge weights
we replace the maximum degreed by the average node degreed̄ .

Theorem 4.For random edge weights, aΘ(1/d)-stepping scheme without shortcut edg
performsO(n+m+ dLl∆) sequential work divided betweenO(dLl∆) phases whp wher
l∆ =O(logn/log logn).

Proof. By Lemma 2 the number of phases is bounded byL
∆

l∆ = O(dLl∆) for ∆ =
Θ(1/d). Subsequently, we show in Lemma 5 that long paths with small total
weight are unlikely.4 This observation is then used in Lemma 6 in order to prove
l∆ =O(logn/log logn) is a bound on the maximum size of a∆-path whp.

To bound the amount of work needed, we argue as in the proof of Theorem
charge the operations performed to nodes, edges, and buckets. Using Lemma 1 it
to boundn∆ andm∆. Lemma 7 shows that taking∆ = O(1/d) implies E[n∆] = O(n)

and E[m∆] = O(n). Finally, Lemma 9 states that the same bounds also hold with
probability. ✷
Lemma 5.Consider independent random edge weights uniformly distributed in[0,1] and
a given path ofl nonrepeated edges. The probability that the total path weight is at
∆ � 1 is given by∆l/l!.

Proof. Let Xi denote the weight of theith edge on the path. The total weight of t
path is then

∑l
i=1 Xi . We prove by induction overl that P[∑l

i=1 Xi � ∆] = ∆l/l! for

4 This is the only part in our analysis that would have to be adapted for other than uniform weight distrib
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∆ � 1: if l = 1 then due to the uniform distribution the probability that a single e
weight is at most∆ � 1 is given by∆ itself: P[X1 � ∆] = ∆. Now we assume tha
P[∑l

i=1 Xi � ∆] = ∆l/l! for ∆ � 1 is true for somel � 1. In order to prove the resu
for a path ofl + 1 edges, we split the path into a first part ofl edges and a second pa
of one edge. For a total path weight at most∆ we have to consider all combinations f
0 � z � ∆ � 1 such that the first part ofl edges has weight at most∆− z and the second
part (one edge) has weightz. Thus,

P

[
l+1∑
i=1

Xi � ∆

]
=

∆∫
0

P

[
l∑

i=1

Xi � ∆− x

]
dx =

∆∫
0

(∆− x)l

l! dx = ∆l+1

(l + 1)! . ✷

Lemma 6.For ∆=O(1/d), no∆-path contains more thanl∆ =O(logn/log logn) edges
whp.

Proof. There can be at mostdl paths without edge repetitions of sizel leading into a given
nodev or ndl such paths overall. (For random graphs, there are at mostnl possible paths
without edge repetitions per node with a probability of(d̄/n)l each.) Using Lemma 5 w
can conclude that the probability for the presence of any∆-path of sizel is bounded by
n(d∆)l/ l! (recall that∆-paths do not use edges more than once). Therefore

P
[∃∆-pathA: |A|� l∆

]
�

∑
l�l∆

n
(d∆)l

l! � n
(d∆)l∆

l∆!
∑
l�0

(d∆)l

l! n
(d∆)l∆

l∆! ed∆

=O(n)
(d∆)l∆

l∆! �
(

ed∆

l∆

)l∆

·O(n) sincek!� (k/e)k.

For ∆ = O(1/d) and l∆ = O(logn/ log logn) the above probability is polynomiall
small. ✷
Lemma 7.For ∆=O(1/d), E[n∆] =O(n) andE[m∆] =O(n).

Proof. The total number of∆-paths in the graph is clearly an upper bound on|C∆| = n∆,
the number of node pairs that are connected by some∆-path. Counting∆-paths and thei
probabilities as in the proof of Lemma 6, we see that the expected number of∆-paths is
bounded by∑

l�1

n
dl∆l

l! = n
(
ed∆ − 1

)=O(n)

for ∆=O(1/d). Thus,E[n∆] =O(n).
Each triple(u, v,w) ∈ C∆+ corresponds to a(2∆)-path (u, . . . , v,w). The expected

number of(2∆)-paths is given by∑
l�1

n
dl(2∆)l

l! = n
(
e2d∆ − 1

)=O(n)

for ∆=O(1/d). Hence,E[m∆] =O(n). ✷
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In order to show that the expected bounds also hold with high probability, we first b
the number of nodes reached from a given node via a∆-path:

Lemma 8.For ∆=O(1/d) and any nodev,∣∣{u: 〈v,u〉 ∈C∆ ∨ 〈u,v〉 ∈C∆

}∣∣ � nO(1/ loglogn)

with high probability.

Proof. Consider the nodes reached fromv via a ∆-path. We argue that the number
nodes reachable by connections inC∆ of length l can be bounded by the offspring
the lth generation of the following branching process ([9,51] provide an introductio
branching processes): An individual (a node)v has its offspring defined by the numb
Yv of light edges leaving it. LetZl denote the total offspring afterl generations, i.e.
Z1= Yv . Thebranching factorof a branching process is given byρ = E[Z1]. Furthermore
for branching processes with identical and independent probabilities for the genera
new nodes,E[Zl] = ρl . Additionally, it is shown in [8] (as cited in [60, Theorem 1]) th
Zl =O(ρl logn) whp.

As long as new edges are encountered when following paths out ofv, the offspring of
the branching process is an exact model for the number of paths leavingv which traverse
only light edges. After a node has been reached from multiple paths, the events on
paths are no longer independent. However, all but one of the multiple paths produc
duplicate entries intoC∆. The additional paths can therefore be discarded. All remai
events are independent.

For independent edge weights uniformly distributed in[0,1], we haveE[Yv] � d∆

(E[Yv] = d̄∆ for random graphs), and by the discussion above,E[Zl] � (d∆)l and
Zl =O((d∆)l logn) whp. In order to asymptotically bound the sum

∑
i�l Zi for d∆ > 1

we can concentrate on termZl since a growing exponential sum is dominated by its
summand. For∆=O(1/d) we can substitutel = l∆ =O(logn/ log logn) andd∆=O(1)

yielding the desired bound.✷
Although the bound from Lemma 8 is quite rough (in particular for random graphs

also if d∆ < 1) it suffices to prove thatn∆ andm∆ are rather sharply concentrated arou
their means:

Lemma 9.For ∆=O(1/d), n∆ � E[n∆] +O(n) andm∆ � E[m∆] +O(n) whp.

Proof. We only give the argument forn∆; the proof form∆ can be made in a large
analogous way. The proof can also be adapted to random graphs with average degd̄.

Let Q be the event that at mostaβ logn light edges leave any node inG and that the
number of∆-paths entering or leaving any node is at mostnaβ/ log logn for some constan
aβ ; let aβ depend on another positive constantβ which we are free to choose. Usin
Chernoff bounds and Lemma 8 we can see thatQ holds with probability at least 1− n−β

for an appropriate constantaβ and sufficiently largen.
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Fig. 3.∆-paths possibly affected by changing the weights of edges out of nodev.

For eachv ∈ V , define the random variableXv := {(v,w, c(v,w)): (v,w) ∈ E)}, i.e.,
Xv describes the edges leaving nodev including their weight.5 Now, n∆ can be viewed a
a function of the independent random variablesXv . In the following we will investigate
how muchn∆ can change if a singleXv is altered.

If Q holds, then changingXv has a limited effect onn∆: by the definition ofQ, there
can be at mostnaβ/ log logn ∆-paths entering a node; the number of edges leavingv is at
mostaβ logn and from each node reached over these edges there are at mostnaβ / log logn

outgoing∆-paths. Multiplying these three quantities gives an upper bound on the nu
of ∆-paths affected if the weights of the edges leavingv are changed. Figure 3 depicts th
situation. Hence,(naβ / loglogn)2aβ logn = nO(1/ loglogn) is an upper bound on the impa
on n∆ if Q holds. On the other hand, ifQ does not hold, then alteringXv may changen∆

by at mostn2 (sincen∆ � n2). Therefore, theaverageimpact onn∆ when changingXv is
bounded by

cv �
(
1− n−β

)
nO(1/ loglogn) + n2−β = nO(1/ loglogn) for β � 2.

This can be used together with themethod of bounded martingale differences[32,64] in
order to show

P
[
n∆ � E[n∆] + t

]
� P[Q] − exp

( −t2

2
∑n

v=1 c2
v

)
.

Substituting 2
∑n

v=1 c2
v � 2n(nO(1/ loglogn))2= nnO(1/ loglogn) andt = n we get

P
[
n∆ � E[n∆] + n

]
� 1− n−β − e

− n2

O(n)nO(1/ log logn) � 1− n−β − e−n1−O(1/ log logn)

� 1− 2n−β

for β � 2. ✷
3.3. Random graphs

So far, the analysis treated the maximum shortest path weight,L, as a paramete
Clearly, there are graphs—even with random edge weights—whereL/∆ = Ω(n) so that
it makes no sense to relax edges from different nodes in parallel. But this is
atypical. In particular, for random graphs with average degreed̄ we now give results which

5 This way to define a sequence of random variables is related to theedge exposure martingaleas described
in [72, Exercise 4.10].
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show thatL is usually rather small. Substituting this result into Theorem 4 we see
O(l∆ logn)=O(log2 n/log logn) phases of aΘ(1/d̄)-stepping algorithm suffice to solv
the SSSP. If we have introduced shortcut edges this reduces toΘ(logn) phases.

In order to boundL we can use a result on thediameterof sparse random graphs: l
minsize(u, v) denote the minimum number of edges needed among all paths fromu to v

in a graphG= (V ,E) if any,−∞ otherwise. Then thediameterof G is defined to be the
maxu,v∈V {minsize(u, v),1}.

Lemma 10 [79]. The diameter of a random directed graph fromD(n, d̄/n) is bounded by
O(logn) whp whenever̄d < c∗ or d̄ > 2 · c∗, wherec∗ > 1 is some constant.6

Since each edge has weight at most one,L = O(logn) whp for nearly all choices
of d̄. However, the more random edges are added to the graph, the smaller the ex
maximum shortest path weight:

Theorem 11.Let G be a random graph fromD(n, d̄/n) with diameterO(logn). For an
arbitrary source nodes and independent random edge weights uniformly drawn f
[0,1], the maximum shortest path weight inG, L = max{dist(s, v): dist(s, v) < ∞} is
bounded from above byO((1/d̄) · logn) whp.

This is a well-known result for large expected degrees,d̄ � a · logn, wherea is some
constant so that all nodes ofG are reachable from the source node whp [39,52]. In
following we will deal with the casēd < a · logn.

Proof. The set of nodes reachable froms, denoted byR(s) is eithersmall, |R(s)| =
O((1/d̄) · logn) whp, or giant, |R(s)| = Θ(n) whp [59]. Hence, ifR(s) is small, then
Theorem 11 follows immediately: any node inR(s) can be reached by a path of at mo
|R(s)| edges, each of which has weight at most one.

Therefore, from now on we assume that|R(s)| is giant. Our proof proceeds as follow
First we show that a subgraphG′ of G contains a strongly connected componentC′ of
Θ(n) nodes so that any pair of nodes fromC′ is connected by a path of total weig
O((1/d̄) · logn) whp. Then we prove that there is a path froms to C′ not exceeding the
total weightO(1+ (1/d̄) · logn) whp. Finally, we show that all nodes inR(s) can be
reached fromC′ via a path of weightO(1+ (1/d̄) · logn) whp. For d̄ = O(logn) the
above path weights sum up toO((1/d̄) · logn) whp.

If d̄ =O(1), the result is an immediate consequence of the assumption that the
has logarithmic diameter. Otherwise, we can assume that 3· c∗ < d̄ < a · logn. For this
proof call edges with weight at most 3· c∗/d̄ tiny. Consider the subgraphG′ = (V ,E′)
of G obtained by retaining tiny edges only.G′ is a random graph with edge probabili
3 · c∗/n, and it has a giant strong componentC′ of sizeα · n for some constantα (e.g.,
[5,59]).

6 The value ofc∗ depends on the constant used in the definition of “whp.” We do not dwell on the details
this gap seems to be an artifact of the analysis [79].
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By Lemma 10 the diameter of the subgraph induced by the nodes inC′ and its adjacen
edges inE′ is at mostO(logn) whp. Since all edges inE′ have weight at most 3· c∗/d̄

any pair of nodes fromC′ is connected by a path of total weightO((1/d̄) · logn) whp.
We now show that there is a path froms to C′ not exceeding the total weightO(1+

(1/d̄) · logn) whp. We apply the node exploration procedure of [59] and [5, Section 1
starting in the source nodes and using the edges ofE: Initially, s is active and all othe
nodes are neutral. In each iteration we select an arbitrary active nodev, declare it dead
and make all neutral nodesw with (v,w) ∈ E active. The process terminates when th
are no active nodes left. LetYt be the number of active nodes aftert iterations (Y0 = 1).
We are interested in the set of nodes reached froms after t ′ = (c · logn)/d̄ iterations
for some appropriate constantc > 1. If any of those nodes is inC′ then we are done
Otherwise,Y1, . . . , Yt ′ � 1 sinceR(s) is giant by assumption. Let BIN[n,p] denote the
binomial distribution with parametersn andp, i.e., the number of heads inn independen
coin tosses with probability of headsp. Provided thatYt−1 � 1, Yt is distributed as follows
[5,59]: BIN[n− 1,1− (1− d̄/n)t ] + 1− t , i.e.,Yt is sharply concentrated around

f (t) := (n− 1) · (1− (1− d̄/n)t
)+ 1− t .

We use the inequality

(1− x)y < 1− x · y + (x · y)2/2 if x · y < 1,

� 1− 2 · c− 1

2 · c · x · y if c · x · y < 1, c > 1,

in order to derive a lower bound onf (t). Indeed we havec · d̄ · t ′/n = Θ(logn)/n < 1,
hence

f (t ′) � (n− 1) · 2 · c− 1

2 · c · d̄ · t ′/n+ 1− t ′

= c · (n− 1)

d̄ · n ·
(

d̄ − 1− 1

2 · c
)
· logn− 1.

Sinced̄ > 3·c∗ > 3 there is a choice for the constantsc andc′(c) such thatf (t ′) � c′ · logn

andYt ′ � (c′/2) · logn whp by Chernoff bounds.
So, there areYt ′ � (c′/2) · logn active nodes whp whose outgoing edges have no

been inspected in the search procedure froms. Now consider an arbitrary active nod
v /∈C′ and an arbitrary nodew ∈C′.

We only know that a possible edge(v,w) is not tiny in case there is also a tiny ed
(w′, v) from some nodew′ ∈C′ (otherwisev would be inC′). We will find a nontiny edge
(v,w) with probability (d̄ − c∗)/n, and for all outgoing edges under consideration th
probabilities are independent. Since|C′| = Ω(n) andYt ′ = Ω(logn), the probability that
at least one such edge(v′,w) exists is at least 1− (1− (d̄ − c∗)/n)c′·n logn � 1− n−β for
any constantβ > 0, an appropriate choice ofc′(β) and sufficiently largen. Consequently
there is a path froms to C′ using at mostO(1+ (1/d̄) · logn) edges whp. Since all edge
one this path have weight at most one, the desired bound on the path weight froms to C′
follows immediately.

The same technique is applied to show that any nodev in R(s) which does not belon
to C′ can be reached fromC′ via a path ofO(1 + (1/d̄) · logn) edges inG whp.
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However, now the search procedure follows the edges in the opposite direction. No
the different search procedures are not mutually independent. Still, each single sear
with probability at mostn−β . Hence, using Boole’s inequality all nodes can be reac
within the claimed bounds with probability 1− n · n−β = 1 − n−(β−1) which is high
probability since we are free to chooseβ . This completes the proof of Theorem 11 f
3 · c∗ < d̄ < a · logn. ✷

4. A simple parallelization

Our parallel SSSP algorithms are based on sequential∆-stepping: we stick to the
sequential search for the next nonempty bucket but perform the operations for a
of the current bucket in parallel. In order to do so we need to devise strategies ho
work for a phase is subdivided among the processors.

We start with a straightforward algorithm based on arandomdistribution of the node
to PUs (Section 4.1): the bucket structure is distributed over the PUs. In a phase, e
does the work for the nodes randomly assigned to its own structure. This strategy is a
quite good for sparse graphs where the maximum node degree is not much larger t
average node degree, e.g., road-maps.

The algorithm also serves as a basis for the distributed memory algorithms discu
Section 8 and the implementation described in Section 9. In Section 4.2 we show
small modification can yield better results for random graphs. Only for nonrandom g
with large node degree variations, the random node allocation used in this section
sufficient to guarantee good load-balancing for many processors. We will deal wit
problem in Section 5.

4.1. Graphs with low maximum degree

Theorem 12.The single source shortest path problem for directed graphs withn nodes,
m edges, maximum in-degree and out-degreed , maximum path weightL, maximum∆-
sizel∆, n∆, andm∆ defined as in Section1.2 can be solved on a CRCW PRAM in tim
O( L

∆
dl∆ logn) and workO(n+m+ n∆ +m∆ + L

∆
dl∆ logn) whp.

To implement the operations from Fig. 1 in a distributed way, we first have to ex
the layout of the data structures. The nodes are distributed randomly over the P
each node has its adjacency list locally accessible. These adjacency lists are par
into heavy and light edges. The bucketsB[i] of the bucket queue and the setR of deleted
nodes are split among the PUs following the distribution of the nodes, i.e., if PUj stores
the nodesVj then it also storesB[i] ∩ Vj andR ∩ Vj . Similarly, the relaxation reques
Req are generated locally for eachB[i]∩Vj . Then the requests are redistributed accord
to their target nodes and the PUs responsible for them. All required operations c
implemented using fairly standard parallelization techniques. The difficult part is to
that the work is sufficiently evenly distributed among the PUs.

To prove Theorem 12, we explain in a step-by-step manner, how the algorithm
Fig. 1 can be parallelized usingp = �(n+m+ n∆ +m∆)/((L/∆)dl∆ logn)�< n PUs.
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Preparations: The nodes are assigned to random PUs by generating an array “in
random PU indices. Entry ind[v] gives the PU responsible for nodev. The adjacency lists
are reorganized into separate arrays of heavy and light edges for each node. Eac
p PUs maintains its own bucket structure and stores there the queued nodes it is resp
for. These operations can be done in timeO((n+m)/p+ log(n)) and takeO(n+m) space.

Loop control: Skippingk empty buckets can be done in timeO(k+ logn)—each PU can
traverse locally empty buckets in constant time per bucket. EveryΘ(logn) iterations it is
checked whether any PU has found a nonempty bucket and, if so, the globally sm
index with a nonempty bucket is found.

MaintainingR: The set of removed nodesR can be represented as a simple list per
Inserting a node several times can be avoided by storing a flag with each node tha
when the node is inserted for the first time.

Generating requests: Let k = |B[i]| and let K denote the total number of edg
emanating from nodes inB[i]. Since the nodes have been randomly assigned, tk

adjacency lists to be scanned can be viewed as jobs of size at mostd which have been
randomly assigned to the PUs. This situation can be analyzed using the following
result based on weighted Chernoff bounds [4, Lemma 2]:

Lemma 13.Consider any number of subproblems of size in(0, d]. Let K denote the sum
of all subproblem sizes. If the subproblems are randomly allocated top PUs, then the
maximum load of any PU will be bounded byO(K/p+ d log(n+ p)) whp.7

Assigning Requests to PUs: Let Reqi be the set of requests generated by PUi. Any
request(w,x) ∈ Reqi must now be transferred to the bucket structure associated
PU Pind(w). Using Lemma 13, it can be seen that due to the random indexing,
PU receivesO(|⋃Reqj |/p + d logn) requests whp. The value of|⋃Reqj | can be
obtained and broadcast inO(logn) time. Each PU sets up an empty request buffer wh
is a constant factor larger than needed to accommodate the requests directed to
The requests are placed by “randomized dart throwing” [69] where PUi tries to write
(w,x) ∈ Reqi to a random position of the target buffer ofP U ind(w) (see Fig. 4).
Several PUs may try to write to the same memory location. This is the only st
the parallelization that needs the CRCW PRAM. Due to the choice of the buffer
each single placement succeeds with constant probability. Using Chernoff bound
straightforward to see that the dart throwing terminates in time proportional to the b
size,O(|⋃Reqj |/p + d logn) whp. For the unlikely case that a buffer is too sm
correctness can be preserved by checking periodically whether the dart throwin
terminated and increasing the buffer sizes if necessary.

7 The seemingly unrelated parametern comes into play since we based our definition of “whp” on it. A
note, that using a more detailed calculation, a boundK(1+ o(1))/p can be proven forK = ω(pd log(n+ p)).
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Fig. 4. Placing requests into buffers by randomized dart-throwing. ProcessorP0 succeeds in placing its current
treated request inB2 and can turn to its next request.P1 andP2 contend for a free slot inB1. P2 wins.P1 has to
probe another position inB1. P3 fails because the chosen position is already occupied.

Performing relaxations: Each PU scans its request buffer and sequentially perform
relaxations assigned to it. Since no other PUs work on its nodes the relaxations w
atomic.

To summarize, control overhead accounts for at mostO(logn) time per phase; the loa
imbalance accounts for at mostO(d logn) time per phase. Summing over all phases
by using Lemma 2, we get an execution time ofO((n+m+ n∆ +m∆)/p+ L

∆
dl∆ logn).

4.2. Improvements for random graphs

We now outline how explicit load-balancing for the generation of requests yie
more efficient parallelization for the case of random graphs. Although this result w
superseded in subsequent sections, it introduces techniques needed later and dem
that simple algorithms can work quite well for “benign” inputs:

Theorem 14.Consider random graphs fromD(n, d̄/n), with arbitrary nonnegative edg
weights, maximum path weightL, and maximum∆-sizel∆, where∆ is chosen sufficientl
small in order to ensuren∆ +m∆ =O(n). In that case, SSSP can be solved on a CR
PRAM in timeO(d̄ + (L/∆ + logn)l∆ logn) and workO(d̄n + (L/∆ + logn)l∆ logn)

whp.

If the edge weights are also random, then all but thec logn smallest edges per node c
be ignored without changing the shortest paths for some constantc [39,52]. Thus, after an
initial pruning step we may assumed̄ =O(logn) for random edge weights. Together w
Lemmas 6 and 7, and Theorem 11 we get:

Corollary 15. The SSSP on random graphs fromD(n, d̄/n) with random edge weight
can be solved usingΘ(1/d̄)-stepping in timeO(log3 n/ log logn) andO(d̄n) work on a
CRCW PRAM whp.



136 U. Meyer, P. Sanders / Journal of Algorithms 49 (2003) 114–152

liza-
re

explic-
derived
e

ncy list
es with

th large
is very

there
relaxed
fore by

hnical
, targets

n,
e

again,
e
se
Function findRequests(V ′, kind : {light,heavy}) : set of Request
k :=∑

v∈V ′ outdegreekind(v)

assign a unique number 1� j � k (* Prefix sums *)
to each edge of type ‘kind’(vj ,wj ) leaving a node inV ′

for 1� j � k dopar Req[j ] := (wj , tent(vj )+ c(vj ,wj ))

Fig. 5. Finding requests in an explicitly load balanced way.

In the following we show how Theorem 14 is obtained. From the previous paralle
tion we maintain the idea that there are at mostp � n separate bucket structures, whe
each processor is in charge of its own structure. The only new feature we add is to
itly organize the generation of requests. Instead of generating the set of requests
from the bucket structure of PUi exclusively by PUi, now all PUs cooperate to build th
total set of requests. This can be done by computing a prefix sum over the adjace
sizes of the nodes in the request set first and then assign consecutive groups of nod
about equal number of edges to the PUs; see Fig. 5 for the pseudo code. Nodes wi
out-degree may cause several groups containing only edges which emanate from th
node. The extra time needed to compute the prefix sums and schedules isO(logn) per
phase.

Now we exploit the structure of random graphs to show that for relaxing requests
is no load balancing problem. For heavy edges this is easy to see since they are
only once: for random graphs their targets are independently distributed and there
Chernoff bounds, each bucket structure (PU) receives onlyO(|Req|/p + logn) requests
whp. Since there are at mostO( L

∆
l∆) phases and at mostO(d̄n) relaxations of heavy

edges in total, this accounts forO(d̄n/p+ L
∆

l∆ logn) time.
Although assigning light requests works as for heavy requests, we get a tec

problem here. The targets of re-relaxed edges are no longer independent. However
are still independent when edges are relaxed for the first time. Let

Ki :=
∣∣{(v,w) ∈E: dist(v) ∈ [

i∆, (i + 1)∆
)∧ c

(
(v,w)

)
� ∆

}∣∣,
i.e., the number of light edges ever relaxed in bucketi not counting re-relaxations. The
by Chernoff bounds, no node receives more thanO(�Ki logn/n�) requests in any phas
for bucketi whp. LetK ′

ij denote the number of requests sent in thej th phase for bucketi.
Since nodes are placed independently of the computation, we can use Lemma 13
to see that no PU receives more thanO(K ′

ij /p + �Ki logn/n� logn) requests in phas
j for bucket i whp. For the request contentionK∗ summed over all phases we u∑

ij K ′
ij � n + n∆ + m∆,

∑
ij Ki = O(l∆(n + n∆ + m∆)), andn∆ + m∆ = O(n) whp

by Lemmas 7 and 9:

K∗ =O
(∑

ij

K ′
ij

p
+

⌈
Ki logn

n

⌉
logn

)

=O
(

n+ n∆ +m∆

p
+

∑
ij

(
1+ Ki logn

n

)
logn

)

=O
(

n +
(

Ll∆ + l∆(n+ n∆ +m∆) · logn
)

logn

)

p ∆ n
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∆
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)
l∆ logn

)
.

Hence, the total time consumption is given byO(d̄n/p + (L/∆ + logn)l∆ logn). The
work and time bounds for the PRAM follow from choosingp = min{n, �d̄n/((L/∆ +
logn)l∆ logn)�}.

5. Faster parallel bucket traversal

The parallelization of Section 4.1 is well-suited for sparse graphs with low node de
e.g., for road-maps where the maximum node degreed is usually bounded by a sma
constant. However, the performance may deteriorate on graphs with high degree
because of poor load balancing for generating and performing requests. In Section
already demonstrated improvements forrandomgraphs by explicitly load balancing th
generation of requests. Now we show how to gain a factor ofΘ(d) for arbitrary graphs by
also load balancing the request executions.

In short, the additional balancing works as follows: after their generation, all req
are rearranged according to their target nodes. This rearrangement turns out t
bottleneck of the parallelization. The algorithmically most interesting part here is
rearranging does not require sorting but onlysemisortingwhich can be performe
significantly faster. The remaining operations are fairly simple. The strictest request
each group is selected. Only the selected requests are finally executed. Thus, eac
node receives at most one request. These selected requests will be load balanced
PUs whp due to the random assignment of nodes to PUs.

This measure is also a prerequisite for removing the factorl∆ in Section 6—now we
can insert the shortcuts from Section 3.1 without second thoughts about increas
maximum degree of the graph.

Theorem 16.The single source shortest path problem for directed graphs withn nodes,
m edges, maximum path weightL, maximum∆-size l∆, and n∆ and m∆ defined as in
Section3.1can be solved on a CRCW PRAM in timeO( L

∆
l∆ logn) and workO(n+m+

n∆ +m∆ + L
∆

l∆ logn) whp.

Proof (outline). We concentrate on load balancing the execution of requests
remainder of the parallelization works as in Section 4. What makes executing re
more difficult than generating them is that the in-degree of a node does not conve
many requests will appear in a particular phase. If some target nodev is contained in many
requests of a phase then it might even be necessary to set aside several processo
with the request forv.

Instead of the brute-force randomized dart-throwing as in Section 4.1, we use an e
load balancing which groups different requests for the same target and only exe
the strictest relaxation. On CRCW PRAMs, grouping can be done efficiently using th
semi-sorting routine explained in Lemma 17. Then we can use prefix sums to sc
�p|Req(w)|/|Req|� PUs for blocks of size at least|Req|/p and to assign smaller group
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with a total of up to|Req|/p requests to individual PUs. The PUs concerned with a gr
collectively find a request with minimum distance in timeO(|Req|/p + logp) and then
relax it in constant time. Summing over all phases yields the desired bound.✷

Figure 6 outlines a fast parallelization of the procedure ‘relaxRequest’ and F
provides an illustration.

Lemma 17.Semi-sortingK records with integer keys, i.e., permuting them into an ar
of sizeK such that all records with equal key form a consecutive block, can be perfo
in timeO(K/p+ logK) on a CRCW-PRAM whp.8

ProcedurerelaxRequests(Req)
semi-sort ‘Req’ usingv as key for request(v, x)

foreach block Req(w)= {(w,x) ∈Req} of requests for nodew dopar
schedule max{1, �p|Req(w)|/|Req|�} PUs

(* possibly several small blocks per PU (prefix sums) *)
y :=min{x: (w,x) ∈Req(w)}
relax(w, y)

Fig. 6. Load balanced edge relaxation using semi-sorting.

Fig. 7. Load balancing for generating and performing requests: Requests are denoted by a box for the sou
and a circle for the target node, colors are used to code node indices. The processors cooperate in bu
total set of requests: Large adjacency lists are handled by groups of PUs. Subsequently, the generated
are grouped by target nodes using semi-sorting. Then superfluous requests are filtered out, and the r
request are sent to the processors which host the appropriate bucket structures. Without the balancing,
P0 would be over-loaded during the generation, and processorP1 would receive too many requests.

8 For this lemma whp is defined as a function ofK .
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Proof. First find a perfect hash functionh : V → 1 . . cK for an appropriate constantc.
Using the algorithm of Bast and Hagerup [10] this can be done in timeO(K/p + logp)

(and even faster) whp. Subsequently, we apply a fast, work efficient sorting algorith
small integer keys such as the one by Rajasekaran and Reif [76] to sort by the hash
in timeO(K/p+ logK) whp. ✷

6. Finding shortcuts

In this section we explain how the multiplicative factorl∆ in Theorem 16 can be move
to an additive term which is independent of the maximum path lengthL by explicitly
inserting the shortcut edges between node pairs inC∆ as mentioned in Section 3.
Shortcuts are found by exploring∆-paths emanating from all nodes in parallel. This
affordable for random edge weights because we know that there are only few sim∆-
paths. Furthermore, a lot of parallelism is available. The only additional complicati
that we have to make sure that only simple paths are explored. This can be achie
maintaining a hash table of connections already found and keeping only the shorte
found.

Theorem 18.Let n′∆ (m′
∆) denote the number ofsimple9 ∆-paths( plus a light edge) and

let l′∆ denote the number of edges in the longest simple∆-path. There is an algorithm whic
inserts an edge(u, v) with weightc(u, v)= dist(u, v) for each shortest path(u, . . . , v) with
dist(u, v) � ∆ usingO(l′∆ logn) time andO(n+m+ n′∆+m′

∆) work on a CRCW-PRAM
whp.

Note thatn∆ counts node pairs whereasn′∆ counts simple paths. On some grap
we may haven′∆ " n∆. However, often the two ways of counting paths make no
difference. In particular, our bounds for random edge weights from Section 3.2 (e
the sharp concentration results) also apply to the primed quantities. We get the fol
improved time bounds by adding the bounds from Theorem 18 and the time bound
the previous sections taking into account that nowl∆ =O(1).

Corollary 19. The single source shortest path problem for directed graphs withn nodes,
m edges, maximum path weightL andn′∆, m′

∆, l′∆ as defined in Theorem18can be solved
on a CRCW PRAM in timeO((l′∆ + L/∆) logn) and workO(n + m+ n′∆ + m′

∆) whp.
For random edge weights, maximum in-degree and out-degree at mostd and∆=Θ(1/d)

we get expected timeO(dL logn) and expected workO(n+m). For random graphs with
random edge weights and edge probabilityd̄/n, Θ(1/d̄)-stepping with shortcuts works i
expected timeO(log2 n) and expected workO(n+m).

Assume for now that shortcuts are already present. Figure 8 describes a varian∆-
stepping which exploits their existence. Classifying edges as light or heavy is no l

9 A simple∆-path is a∆-path on which all nodes are pairwise distinct.
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E :=E∪findShortCuts(∆)
foreach v ∈ V do tent(v) :=∞ (* Unreached *)
relax(s, 0); i := 0 (* Source node at distance 0
while ¬isEmpty(B)do (* Some queued nodes left *

i :=min{j > i: B[j ] �= ∅} (* Smallest nonempty bucket *
foreach (v,w) ∈ B[i] do

if tent(v)+ c(v,w) � (i + 1)∆ then
relax(w, tent(v)+ c(v,w)) (* Intra-bucket edge *)

foreach (v,w) ∈ B[i] do
if tent(v)+ c(v,w) > (i + 1)∆ then

relax(w, tent(v)+ c(v,w)) (* Extra-bucket edge *)

Fig. 8. High level∆-stepping SSSP algorithm which assumes the presence of shortcut edges.

important for the shortest path search itself. By explicitly treating intra-bucket e
(source and target reside in the same bucket) first, each edge is relaxed at most onc
buckets 0 throughi − 1 have been emptied, a single relaxation pass through the e
reaching fromB[i] into B[i] suffices to settle all nodes now inB[i]. After that,B[i] can
be emptied by relaxing all edges reaching out ofB[i] once.

Figure 9 outlines a routine which finds shortcuts by applying a variant of the Bellm
Ford algorithm to all nodes in parallel. It solves an all-to-all shortest path pro
constrained to∆-paths. The shortest connections found so far are kept in a hash
of sizeO(m′

∆) (we can use dynamic hashing if we do not know a good bound form′
∆).

This table plays a role analogous to that of tent(·) in the main routine of∆-stepping. The
setQ storesactiveconnections, i.e., triples(u, v, y) wherey is the weight of a shortes
known path fromu to v and where paths(u, . . . , v,w) have not yet been considered
possible shortest connections fromu to w with weight y + c(v,w). In iterationi of the
main loop, the shortest connections usingi edges are computed and are then used to up
‘found.’ Using similar techniques as in Section 5, this routine can be implemented t
in O(l′∆ logn) parallel time usingO(n + m + n′∆ + m′

∆) work: We needl′∆ iterations
each of which takes timeO(logn) and workO(|Q′|) whp. The overall work bound hold

Function findShortcuts(∆) : set of weighted edges
found : HashArray[V × V ] (* return∞ for undefined entries *)
Q := {(u,u,0): u ∈ V } (* (start,destination,weight) *)
Q′ : MultiSet
while Q �= ∅ do

Q′ := ∅
foreach (u, v, x) ∈Q dopar

foreach light edge(v,w) ∈E dopar
Q′ :=Q′ ∪ {(u,w,x + c(v,w))}

semi-sortQ′ by common start and destination node
Q := {(u, v, x): x =min{y: (u, v, y) ∈Q′}}
Q := {(u, v, x) ∈Q: x � ∆∧ x < found[(u, v)]}
foreach (u, v, x) ∈Q dopar found[(u, v)] := x

return {(u, v, x): found[(u, v)]<∞}

Fig. 9. CRCW-PRAM routine for finding shortcut edges.
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since for each simple∆-path(u, . . . , v), 〈u,v〉 can be a member ofQ only once. Hence∑
i |Q|� n+ n′∆ and

∑
i |Q′|� n+m′

∆.

7. Determining ∆

In the case of arbitrary edge weights it is necessary to find a step width∆ which is large
enough to allow for sufficient parallelism and small enough to keep the algorithm w
efficient. Although we expect that application specific heuristics can often give us a
guess for∆ relatively easily, for a theoretically satisfying result we would like to be a
to find a good∆ systematically. This can be done by starting with a small value of∆ that
is certain to be save and then iteratively double∆ until there are too many∆-paths. The
previous value of∆ is then a good choice for∆ stepping.

At the first glance, it seems that log∆ calls to the procedure findShortcuts from Fig
would be necessary to find∆. But we will see now that the same can be done w
linear work. We now outline an algorithm that while exploring∆-paths already prepare
information needed for an exploration of 2∆-paths. When the next iteration is started
only has to continue the exploration from the previous phase. By continuously moni
the amount of work performed, the search can be stopped when∆ has become too large t
finish an iteration.

We now explain more details assuming that the adjacency lists have been prepro
to bepartially sorted: Let ∆0 := mine∈E c(e) and assume10 that ∆0 > 0. The adjacency
lists are organized intoblocksof edges with weight 2j ∆0 � c(e) < 2j+1∆0 for some
integerj . Blocks with lighter edges precede blocks with heavier edges.11

Theorem 20.Let n′∆, m′
∆, andl′∆ be defined as in Theorem18and consider an input with

partially sorted adjacency lists. For any constantα, there is an algorithm which identifie
a step width∆, such thatn′∆ +m′

∆ � α · (n+m), andn′(2∆) +m′
(2∆) > α · (n+m) which

can be implemented to run inO((l′∆ + log∆/∆0) logn) time usingO(n+m) work whp.

The basic idea is to reuse the procedure findShortcuts(∆) of Fig. 9 but to divide the
computation intophases. In phasei (0 � i � log(maxe∈E c(e))/∆0) we set∆cur= 2i∆0
and find all connections(u, v, x) with ∆cur � x < 2∆cur, 0� i � log(maxe∈E c(e))/∆0.

In order to remain work efficient, a number of additional measures are nece
however. Since this routine ‘findDelta’ contains a number of technical details, we co
the pseudo code to Appendix A and only outline the changes compared to the r
‘findShortcuts’ from Fig. 9 here. Most importantly, we have a bucketedtodo-list T . T [i]
stores a list of entries(u, v, x, b) where(u, v, x) stands for a connection fromu to v with
weight x and b points to the first block in the adjacency list ofv which may contain

10 The result can be modified for the case when weight 0 edges are allowed.
11 This preprocessing can be done efficiently sequentially. Since it is also trivially parallelizable on a no

node basis, we get a good parallel preprocessing algorithm for the casep =O(n/d). Otherwise, we know no
algorithm which is always better than sorting. Sorting introduces a factorO(logn) work overhead which can b
amortized over multiple sources.
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edges(v,w) with 2i∆0 � x + c(v,w) < 2 · 2i∆0. (Note that the number of buckets m
be arbitrarily large; in this case, we store the buckets in a dynamic hash table an
initialize those buckets which actually store elements.)

At the starting of phasei, for each entry(u, v, x, b) of T [i], the adjacency list ofv
is scanned beginning at blockb until a block is encountered which cannot produce
candidate connections for bucketi. A new entry of the todo list is produced for the fir
bucketk > i for which it can produce candidate connections. The candidate conne
found are used to initializeQ′.

Both this initialization step and the iteration onQ can produce candidate connectio
whose weights reach into bucketi + 1. After removing duplicates and longer connectio
than found before, we therefore split the remaining candidates into the new contenQ

and a setQnext storing connections with weight in bucketi + 1.
At the end of phasei, whenQ finally remains empty, we create new entries in the t

list for all connections newly encountered in phasei. In order to do that, we keep trac
of all new entries into ‘found’ using two setsS andSnext for connections with weights in
bucketi andi + 1, respectively.Snext is used to initializeS in the next phase.

The total number of connection-edge pairs considered is monitored so that the
procedure can be stopped as soon as it is noticed that this figure exceedsα · (n+m). At
this time, the entries of ‘found’ constitute at least all simple(∆cur/2)-paths. Thus, taking
∆ :=∆cur/2 as the final step width, it is guaranteed that the number of reinsertions a
relaxations in a subsequent application of the∆-stepping will be bounded byO(n+m).
On the other hand,n′(2∆) +m′

(2∆) > α · (n+m).
Using an analogous argument as in Section 6 for finding shortcuts it turns out th

search for∆ can be implemented to run inO((l′∆+ log∆/∆0) logn) time usingO(n+m)

work wherel′∆ denotes the number of edges in the longest simple∆-path.

8. Adaptation to distributed memory machines

After describing our machine model, we proceed to analyze a distributed me
version of the simple algorithm from Section 4.1 in Section 8.1. We refine it for ran
graphs in Section 8.2 and in Section 8.3, a general algorithm with more paralleli
introduced.

Consider the following abstract machine model: There arep PUs numbered 0 throug
p−1 which are connected by a communication network. LetTrouting(k) denote the time
required to routek constant size messages per PU to random destinations. LetTcoll(k)

bound the time to perform a (possibly segmented) reduction or broadcast involv
message of lengthk and assume thatTcoll(x)+ Tcoll(y) � Tcoll(1)+ Tcoll(x + y),
i.e., concentrating message length does not decrease execution time. The analysis c
on finding the number of necessary basic operations. The execution time for a par
network or abstract model is then easy to determine. For example, in the BSP
[63,92] we can substituteTrouting(k)=O(l + (k + logp)g) whp and, using a pipeline
implementation of collective communication,Tcoll(k) = O(l logp + gk). Note, that on
powerful interconnection networks like multi-ported hypercubes we can achieve a
O(logp+ k) whp forTrouting(k) andTcoll(k).



U. Meyer, P. Sanders / Journal of Algorithms 49 (2003) 114–152 143

h that
er

ind
ptions

ainly

ory
m.
ting a

ith

e get

nity to
mory
prefix

ups of
Now
rocessor
st and
the
We assume that the input is distributed over the local memories of the PUs suc
each PU holdsO(n/p) nodes. An adjacency list withk edges is evenly distributed ov
�kp/m� consecutive PUs. The nodes can then be redistributed using a hash function(·)
which we assume to be computable in constant time. (Essentially the same assum
are made for efficient PRAM simulation algorithms [92, Section 4.3] and this is cert
warranted for the simple hash functions used in practice.)

8.1. Adapting the simple algorithm

The PRAM algorithm from Section 4.1 is already almost a distributed mem
algorithm. The hash function ind(w) replaces the index array used in the PRAM algorith
The dart throwing process for assigning requests can be replaced by simply rou
request(w,x) to PU ind(w).

An analysis similar to the PRAM case yields the following bound:

Theorem 21.The single source shortest path problem for directed graphs withn nodes,m
edges, maximum in-degree and out-degreed , maximum path weightL, maximum∆-size
l∆ andm∆ defined as in Section3.1can be solved on a distributed memory machine w
p =O(m∆/(dl∆L)) PUs in time

O
(

m+ Trouting(m)+ Tcoll(m)+ dl∆
L

∆

(
Tcoll(1)+ Trouting(1)

))
whp,

wherem= n+m+ n∆ +m∆/p.

Note, that on powerful interconnection networks like multi-ported hypercubes w
the same asymptotic performance as our CRCW-PRAM algorithm.

8.2. Improvements for random graphs

As in Section 4.2 we use the special case of random graphs as an opportu
introduce fast parallel algorithms for handling large adjacency list. In a distributed me
setting we cannot dynamically schedule outgoing edges between the PUs using
sums as we did for PRAMs in Section 4.2. Instead, we introduce processor gro
size 2i , 0 � i � �logP �. Each processor is member in one group of each size.
adjacency lists are not assigned to random processors as before but to random p
groups. These groups can efficiently cooperate using pipelined collective broadca
reduction operations. Similarly, ifp > n, groups of processors cooperate to find
smallest incoming relaxation requests.

Theorem 22.The SSSP on random graphs fromD(n, d̄/n), maximum path weightL,
maximum∆-sizel∆ andn∆ +m∆ =O(n+m) defined as in Section3.1can be solved on
a distributed memory machine withp =O((n+m)((L/∆+ logn)l∆)) PUs in time
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O
(

n+m

p
+ Trouting

(
n+m

p

)
+ Tcoll

(
n+m

p

)

+ l∆
L

∆

(
Tcoll(1)+ Trouting(1)

))
whp.

In particular, Corollary 15 also transfers and for some distributed memory mac
with powerful interconnection network we again get the same bounds as forCRCW-
PRAMs.

We do a somewhat more detailed analysis here than for the corresponding re
Section 4.2 since Theorem 22 will not be fully superseded by a later result and be
the techniques used here are also applicable to CRCW-PRAMs (where randomized dart
throwing replaces routing).

Scanning adjacency lists to generate requests is load balanced using a static ass
of edges to PUs: An adjacency list of size outdegree(v) is collectively handled by anout-
group of PUs. Out-groups are selected as follows: W.l.o.g., assume thatp is a power
of two minus one and the PUs are logically arranged as a complete binary tr
outdegree(v) > p then all PUs participate inv’s out-group. Otherwise, a subtree rooted a
random PU is chosen which is just large enough to accommodate one edge per PU,
contains 2�log(outdegree(v)+1)�−1 nodes. Requests for a bucket can now be generated b
sending the tentative distance of the nodes inB[i] to the roots of out-groups responsib
for them. (We will later see where this information comes from.) Then, the PUs pa
the node-distance pairs they have received down the tree in a pipelined fashion and
same for the distances of the nodes received from above.

Now consider a fixed leaf PUj for a fixed iteration of the algorithm. (Since interi
tree-nodes pass all their work downwards, interior PUs have no more work to do
a leaf node.) LetXi := 1 if PU j is part of the out-group of a nodei expanded in
this iteration andXi = 0 otherwise. We haveP[Xi = 1] = 2−h(i) if the root of the out-
group of nodei is h(i) levels away from the root of the PU-tree. The total numbe
nodes PUj has to work on isY := ∑k

i=1 Xi if k is the number of nodes expanded
the current iteration andE[Y ] = ∑

i 2−h(i). By the definition of the size of subtrees, w
get E[Y ] = O(K/p) if K is the total number of edges leaving nodes expanded in
iteration. Using a Chernoff bound with nonuniform probabilities [72, Theorem 4.1
is now easy to see thatY = O(K/p + logn) whp. Since the communication pattern
just a slightly generalized form of a broadcast, distributing the tentative distance
be done in timeO(Tcoll(K/p + logn)) whp. Summing over all iterations we get tim
O(Tcoll((n+m)/p + logn) + Tcoll(1)L/∆). Generating the requests is then poss
using local computations only.

For d = O((L/∆ + logn)l∆ logn), the analysis in Section 4.2 can be applied to
that the random graph structure ensures good load balancing. Otherwise, we would
apply more thann PUs. Then, there is no need forp > n explicit local bucket structures an
more. Rather, we organize the PUs into in-groups of�p/n� PUs—one for each node an
no hash function is needed any more. Requests(w,x) are now routed to random membe
of the in-group forw and Chernoff-bounds ensure good load balancing. At the end of
phase, a minimum reduction for each in-group determines the value used for relaxinw.
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8.3. A faster algorithm using shortcuts

This section outlines a distributed memory implementation of the simple∆-stepping
algorithm with shortcuts from Fig. 8. This implementation works for arbitrary gra
We limit ourselves to the shortest path search itself and only note that preprocessi
be done (somewhat inefficiently) by implementing semi-sorting using ordinary so
or using a slower yet work efficient algorithm requiringO(Trouting(nε)) time for
any positive constantε. Both alternatives yield a work-efficient algorithm for power
interconnection networks if the preprocessing overhead can be amortized over suffi
many source nodes.

Recall that the additional difficulty compared to random graphs is that we ha
actively load balance incoming relaxation requests in the case of arbitrary graphs.
more difficult than balancing outgoing requests since the number of requests for a n
not predictable. The semi-sorting routine we used in the PRAM algorithm does not tr
to a distributed memory setting. We circumvent semi-sorting by performing relaxa
lazily at the last possible moment. Since edges need to be relaxed only once in a
with shortcuts, performing relaxations becomes similar to generating requests beca
total number of relaxations for a node is at most its in-degree.

Theorem 23.Consider a directed graphG with n nodes,m edges, maximum path weig
L andn∆, m∆, l∆ as defined in Section3.1. If G has been augmented with shortcut ed
and for each edge(v,w), the in-degree ofw is known, then the single source shortest p
problem can be solved in time

O
(

m+ Trouting(m)+ Tcoll(m)+ L

∆

(
Tcoll(1)+ Trouting(logn)

))
whp,

on a distributed memory machine withp PUs form= (n+m+ n∆ +m∆)/p any given
source nodes.

Scanning adjacency lists to generate requests can be done as in Section 8.2. T
difficult part is to assign the requests to nodes and schedule PUs for performin
relaxations.

The idea for assigning requests is to postpone the relaxation of an edge until the
possible moment—just before the bucket of the target node is emptied. Since edg
relaxed only once, it pays to allocate anin-groupof size 2�log(indegree(v)+1)� − 1 for nodev

analogously to the way out-groups are allocated. Each PU maintains an additional
structureBq for the nodes for which it is part of the in-group. Requests are routed
preassigned position in the in-group, but this information is only used to place the
into Bq . So, after iterationi − 1 is computed, the content ofB[i] is not yet known.
Rather, we first have to findB[i] = ⋃

Bq [i]. This can be done locally for each i
group using a pipelined tree operation which is the converse of the operation us
broadcasting in the out-groups. (Each PU maintains a hash table of nodes already
up the tree.) Then, the result is broadcast to all PUs in the in-groups so that from n
redundant entries of nodes in buckets beyondB[i] can be deleted. Also, edges which ha
not received a request yet are marked as superfluous. Requests ending up there
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iterations will simply be discarded. Finally, the actual global minima are computed
another pipelined reduction operation. Now the heads of the in-groups are ready t
the tentative distances of nodes inB[i] to the heads of the out-groups. The analysis of th
tree-operations is analogous the analysis for the out-groups in Section 8.2

9. Simulations and implementations

Simulations of different algorithm variants played a key role in designing the∆-
stepping algorithm. Here we report a few results obtained for random graphs with ra
edge weights and without shortcuts since they give a feeling for factors hidden b
our asymptotic analysis. Reachable nodes could be accessed by paths of weight.15lnn

d
or shorter. Figure 10 shows the tradeoff between the number of phases and reins
for a particular graph size and different edge probabilities. Interestingly, the nu
of phases needed seems to be inO(logn) even though our analysis only guarante
O(log2 n/ log logn). For example, for∆ = 4/d and d � 2 we never encountered mo
than 5 lnn phases, the number of reinsertions was bounded by 0.25n. The tested graph
ranged from 103 up to 106 nodes and comprised up to 3· 106 edges.

Successfully implementing a linear work algorithm which requires a linear numb
tiny messages with irregular communication pattern is not easy. However, for smallp and
largen, a machine with high bandwidth interconnection network and an efficient lib
routine for personalized all-to-all communication can do the job. We have implem
a simple version of the algorithm for distributed memory machines and randomd-regular
graphs using the library MPI [82]. Tests were run on an INTEL Paragon with 16 proce
For n= 219 nodes andd = 3, speedup 9.2 was obtained against the sequential∆-stepping
approach. The latter in turn is 3.1 times faster than an optimized implementation
Dijkstra’s algorithm. Due to the increased communication costs, our results on
graphs are slightly worse: forn = 216 and d = 32 the speedup of parallel∆-stepping

Fig. 10. Number of phases and reinserted nodes using∆-stepping under different values of∆= c/d . All tests on
graphs fromD(65536, d/n), d = 3, andd = 10.
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compared to its sequential counterpart was 7.5,12 sequential∆-stepping was 1.8 times
faster than Dijkstra’s algorithm.

We also looked for other ways of determining the setR of nodes to be deleted in
phase. We have made experiments where|R| is some fraction of the total priority queu
size |Q|. In our simulations this works as well asΘ(1/d)-stepping for random graph
with |R| =Θ(|Q|/ log|Q|), for random planar graphs we could even use|R| = |Q|/2. We
also tested this approach on real world graphs and edge weights: starting with a roa
of a town (n = 10,000) the tested graphs successively grew up to a large road-m
Southern Germany (n = 157,457). Good performance was found for|R| = Θ(|Q|3/4).
While repeatedly doubling the number of nodes, the average number of phase
different starting points) only increased by a factor of about 1.5; for n = 157,457 the
simulation needed 1178 phases, the number of reinserts was bounded by 0.2n.

10. Discussion

We have developed a parallel algorithm for the shortest path problem which w
for arbitrary directed graphs. How many processors can be used efficiently depe
parameters of the graph; most prominently on the ratioL/∆ between its maximal pat
weight and a step width∆ with the property that there is at most a linear number of sho
connections.

We have shown that∆ can easily be chosen for independent random edge weight
example for dependent edge weights are random geometric graphsGn(r) wheren nodes
are randomly placed in a unit square and each edge weight equals the Euclidean d
between the two involved nodes. An edge(u, v) is included if the Euclidean distanc
betweenu andv does not exceed the parameterr ∈ [0,1]. Random geometric graphs ha
been intensively studied since they are considered to be a relevant abstraction fo
real world situations [28,80]. Takingr =Θ(

√
log(n)/n) results in a connected graph wi

m = Θ(n logn) edges andL = O(1) whp. For∆ = r the graph already comprises a
relevant∆-shortcuts such that we do not have to explicitly insert them. Consequent
PRAM algorithm runs inO((1/r) logn) parallel time and performsO(n+m) work whp.

We believe that the parametersl∆ andl′∆ which indicate the number of edges on∆-paths
the algorithm needs to traverse, are less important. For graphs wherel∆ andl′∆ do matter,
we could further diminish their influence by speeding up the introduction of shortcuts
the pointer doubling technique, i.e., by introducing the new shortcuts found in one
of Algorithm 9 after each phase. In this way,O(logl′∆) phases rather thanΘ(l′∆) would
be sufficient. Even a careful implementation of this idea might be slightly work-ineffic
(polylogarithmic factors) but as for the distributed memory algorithm, the preproce
could be amortized over multiple sources.

The main focus of this paper is a theoretical one, namely, to devise parallel sh
path algorithms which exhibit high parallelism for a large class of graphs. Howeve

12 Our current implementation does not distinguish between heavy and light edges. This increa
communication overhead. Therefore, we expect somewhat higher speedups for an improved implem
which is under development.
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experiments indicate that at least the simple algorithm from Section 4.1 may also
practical use for large graphs and a moderate number of processors. The extreme
sequential∆-stepping which can be a practical improvement since it needs no pr
queue data structure and is more generally applicable than Dial’s algorithm or D
improvement [30]. We have started an experimental study on parallel implemen
which explores additional optimizations like partitioning the graph to increase locality
to find shortcuts efficiently for smallp. The ultimate goal is to achieve useful speedups
real machines using graphs taken from real world problems, e.g., street graphs.

In recent work [66] it was shown how the∆-stepping idea can be augmented by adap
bucket-splitting, thus yielding the first sequential SSSP algorithm with provably l
average-case time for arbitrary directed graphs with random edge weights.
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Appendix A. Pseudo code for ‘findDelta’

Function findDelta() : step width
found : HashArray[V × V ] (* return∞ for undefined entries *
Q := {(u,u,0): u ∈ V } (* (start,destination,weight) *)
T [0] := ∅ (* (start,destination,weight,block) *)
S := ∅ (* remember new connections found
∆cur :=∆0 :=mine∈E c(e) (* current step width *)
Q′ := ∅ : MultiSet
for i := 0 to �log(maxe∈E c(e)/∆0)� do

Snext := ∅; Qnext := ∅
foreach (u, v, x, b) ∈ T [i] dopar (if too many opsreturn ∆cur/2)

foreachedge(v,w) of blockb in v’s adjacency listdopar
Q′ :=Q′ ∪ {(u,w,x + c(v,w))}

j := �log((x + c(first edge of blockb+ 1 in v’s adjacency list))/∆0)�
T [j ] := T [j ] ∪ {(u, v, x, b+ 1))}

while Q �= ∅ do
foreach (u, v, x) ∈Q dopar (if too many opsreturn ∆cur/2)

foreachedge(v,w) ∈E havingc(v,w) � ∆cur dopar
Q′ :=Q′ ∪ {(u,w,x + c(v,w))}

semi-sortQ′ by common start and destination node
H := {(u, v, x): x =min{y: (u, v, y) ∈Q′}}
H := {(u, v, x) ∈H : x < found[(u, v)]}
foreach (u, v, x) ∈H dopar
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if x < ∆cur then
Q :=Q ∪ {(u, v, x)}
if found[(u, v)] =∞ then S := S ∪ 〈u,v〉

else
Qnext :=Qnext ∪ {(u, v, x)}
if found[(u, v)] =∞ then Snext := Snext ∪ 〈u,v〉

found[(u, v)] := x

Q′ := ∅
od
foreach (u, v, b) ∈ S do

b := first block inv’s adj. list having edges heavier than∆cur
x := found[(u, v)]
j := �log((x + c(first edge of blockb in v’s adjacency list))/∆0)�
T [j ] := T [j ] ∪ (u, v, x, b)

Q :=Qnext; S := Snext
∆cur := 2∆cur

return maxe∈E c(e)
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