
Towards Tangent-linear GPU Programs using OpenACC

Bui Tat Minh
The Sirindhorn International Thai-German
Graduate School of Engineering (TGGS)

King Mongkut’s University of Technology North
Bangkok (KMUTNB)
Bangkok, Thailand

minh.bui@rwth-aachen.de

Michael Förster, Uwe Naumann
LuFG Informatik 12: Software and Tools for

Computational Engineering
RWTH Aachen University

Aachen, Germany

{foerster,naumann}@stce.rwth-aachen.de

ABSTRACT

Recently, Graphics Processing Units(GPUs) have emerged
as a very promisingly powerful resource in scientific com-
puting. Algorithmic Differentiation is a technique to nu-
merically evaluate first and higher derivatives of a function
specified by a computer program efficiently up to machine
precision. Derivative programs which are used to compute
derivatives of functions are so-called tangent-linear program
and adjoint program. This paper aims to offload any partic-
ular independent loop in tangent-linear program to GPUs.
The proposed technique is OpenACC APIs for annotating
an independent loop to be executed in parallel on GPUs.
Our case study for OpenACC tangent-linear code shows an
enormous speedup. OpenACC shows its simplicity of ac-
celerating tangent-linear code by hiding the data movement
between CPU and GPU memory.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Distributed program-
ming, Parallel programming; G.1.4 [Quadrature and Nu-

merical Differentiation]: Automatic differentiation

General Terms

Performance, Algorithms

Keywords

arithmetic differentiation, tangent-linear model, data paral-
lelism, SIMD, OpenACC

1. INTRODUCTION
In simulation science, the sensitivity of an output of a sim-

ulation program with respect to its input change plays an
important role. Scientists would like to know how much the
output values change when the input values are perturbed.
If these changes are big, the scientists should pay attention
to the accuracy of their mathematical model. An inaccurate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SoICT ’13, December 05 - 06 2013, Danang, Viet Nam
Copyright 2013 ACM 978-1-4503-2454-0/13/12...$15.00.
http://dx.doi.org/10.1145/2542050.2542059

model leads to wrong simulation results. Therefore, achiev-
ing sensitivity in simulation science becomes crucial.

Algorithmic (also Automatic) Differentiation, or AD for
short, is a technology for computing sensitivities by auto-
matically augmenting computer programs with additional
statements of derivative computation. AD exploits the fact
that even the most complicated program still executes a
sequence of elementary operations (plus, subtract,division,
product, etc) or common intrinsic functions (sine, cosine,
exp, etc). Any complicated program can be augmented
with statements to compute derivatives of these operations
and functions. The augmented program is so-called deriva-
tive program. Within a first-order derivative program, both
function values and first-order derivatives are computed. By
re-application of AD onto the first-order derivative program,
we obtain derivative code to compute second-order deriva-
tives and so on. Derivative computation is computer-aid
calculation; therefore, AD avoids truncation errors which
we usually encounter using Finite Differences[6].

In November 2011, a group of companies comprising CAPS,
CRAY, NVIDIA, and PGI announced a new standard for
GPU computing, called OpenACC APIs. OpenACC pro-
vides directives, runtime library routines, and environment
variables to programmer for offloading code in C/C++ and
Fortran programs from the CPU to an attached accelerator
device, such as GPU. The technique that OpenACC com-
piler uses is source transformation. OpenACC compiler such
as the commercial PGI compiler transforms OpenACC aug-
mented code into highly optimized CUDA code. In March
2013, PGI compiler officially supported C++ in pgc++ ver-
sion 13.2. This brings us a good chance to experiment with
AD code on the GPUs.

This paper aims to offload any particular independent loop
in tangent-linear code to GPUs. A case study is conducted to
measure speedup change with respect to loop size parameters
in a parallel tangent-linear program.

The paper is organized in the following structure. Section
2 discusses related work to this paper. Section 3 introduces
us to a basic knowledge of Tangent-linear Model, Derivatives
Code Compiler and OpenACC. Section 4 proposes Ope-
nACC tangent-linear code, followed by a case study in Sec-
tion 5. Section 6 is our conclusion and outlook of this paper.

2. RELATED WORK
In the paper Toward adjoint OpenMP [2], the authors dis-

cussed parallelized adjoint code using OpenMP. The authors
experimented with derivative code on multi-core CPUs.
OpenACC APIs is a new approach to offloading code to

27

GPUs. The programing paradigm is very close to OpenMP,
where we annotate parallel sections with pragmas. But Ope-
nACC works with accelerator devices, like GPUs, which
have separated memory space from the CPUs. OpenACC
hides the complexity of moving data back and forth between
host memory and device memory.

3. BACKGROUND

3.1 Tangent-linear Model
Consider a multivariate function F : Rn → R

m

y = F (x),

F is assumed to be continuously differentiable in R
n. This

leads to the existence of the Jacobian matrix of F .

Definition 1. The Jacobian matrix of F [6]:

∇F (x) ≡
(

∂yj

∂xi

)

i=0,...,n−1;j=0,...,m−1

∈ R
m×n

Each entry of the Jacobian matrix is a partial derivative of
one output component yj of the output vector y with respect
to one input component xi of the input vector x.

Definition 2. The tangent-linear model F (1)[6] : Rm×n ×
R

n → R
m is defined as

y
(1) = ∇F (x) · x(1)

We call x(1) a tangent-linear direction and y(1) a directional
derivative in that direction. Ranging x(1) over the Carte-
sian basis vectors in R

n yields the Jacobian matrix. The
procedure of assigning x(1) to a basic vector, so-called seed
vector, is called seeding. Calculating y(1) is called harvesting
in tangent-linear model.

At the end of executing the tangent-linear model, we ob-
tain both values and derivatives of function F .

Example 1. Given:

y = F (x) : R2 → R
2

(

y0
y1

)

=

(

2(x2
0 + x2

1)

sin(x2
0 + x2

1 +
π

2
)

)

(1)

Find
∂(y0)

∂(x1)
and

∂(y1)

∂(x1)
at x̆ = (

√

π

2
,

√

π

2
) ?

We consider the seed vector: x(1) = (x
(1)
0 , x

(1)
1) = (0, 1).

In the tangent-linear model, the following values are calcu-
lated as in Table 1.

3.2 Derivatives Code Compiler
Derivatives code compiler, or dcc for short, transforms a

numerical program written in a subset of C/C++ into a
derivative program using a source-to-source transformation
technique. Dcc is developed at the LuFG Informatik 12:
Software and Tools for Computational Engineering (STCE),
RWTH Aachen University. Applying a set of techniques of
AD, dcc generates two versions of derivative code: tangent-
linear code by forward mode AD or adjoint code by reverse
mode AD[6].

The input of dcc is a numerical program written in a sub-
set of C/C++. For the list of syntax accepted by dcc, refer

Local tangent-linear model

v
(1)
0 = x

(1)
0 = 0

v0 = x0 =

√

π

2

v
(1)
1 = x

(1)
1 = 1

v1 = x1 =

√

π

2

v
(1)
2 =

∂ϕ2

∂v0
· v(1)0 +

∂ϕ2

∂v1
· v(1)1

= 2v0 · v(1)0 + 2v1 · v(1)1 = 2 ·
√

π

2
· 0 + 2 ·

√

π

2
· 1 =

√
2π

ϕ2 = v2 = v
2
0 + v

2
1 = (

√

π

2
)2 + (

√

π

2
)2 = π

v
(1)
3 =

∂ϕ3

∂v2
· v(1)2 = 2 · v(1)2 = 2

√
2π

ϕ3 = v3 = 2v2 = 2π

v
(1)
4 =

∂ϕ4

∂v2
· v(1)2 = cos(v2 +

√

π

2
) · v(1)2 = cos(π +

π

2
) = 0

ϕ4 = v4 = sin(v2 +
π

2
) = sin(π +

π

2
) = −1

y
(1)
0 = v

(1)
3 = 2

√
2π

y0 = v3 = 2π

y
(1)
1 = v

(1)
4 = 0

y1 = v4 = −1

Table 1: An example of local tangent-linear code.
The computation of F (x) executes a sequence of elemen-
tary operations and functions (ϕ2, ϕ3, ϕ4). We augment the
original code with derivative calculation before each elemen-

tary statement. We put local tangent variables v
(1)
2 , v

(1)
3 ,

and v
(1)
4 before their respective statements for computing

v2, v3, and v4 (so-called Single Assignment Code or SAC).
At the end, we obtain both the function values and partial

derivatives with respect to x1 at x̆ = (

√

π

2
,

√

π

2
). They are

∂(y0)

∂(x1)
= 2
√
2π and

∂(y1)

∂(x1)
= 0. Partial derivatives can also

be computed using adjoint model. Please refer to [5] for
adjoint example.

28

to [6]. The output of dcc is a derivative code, either tangent-
linear code or adjoint code. We consider the following gen-
eral case to understand what the input and output of dcc
are:
Given:

F : Rn → R
m
, y = F (x), (2)

where x and y are not aliased (represented by different pro-
gram variables). The implementation of F , which is the
input of dcc, has the following signature:

void f(int n, int m, double *x, double *y).

The tangent-linear program:

F
(1) : Rn × R

n → R
m × R

m :

(

y

y(1)

)

= F
(1)(x, x(1)) (3)

computes both y and y(1) and has a signature as follows:

void t1_f(int n, int m, double *x, double* t1_x,

double *y, double *t1_y).

where t1 denotes a tangent-linear subroutine and tangent-
linear variables. This program is the output of dcc. We need
to seed vector t1 x for n times to accumulate the whole Ja-
cobian matrix.
Not only can dcc generate tangent-linear code of any com-
puter program but also adjoint code. Please refer to [6] for
explanation about adjoint code. This paper focuses on port-
ing independent loops in tangent-linear code to the GPUs.

3.3 OpenACC
OpenACC fits our goal to offload independent loops in

tangent-linear code to GPUs. OpenACC provides some fea-
tures, namely accelerator initialization, data movement, and
kernel creation.

3.3.1 Accelerator initialization

OpenACC compiler helps to initialize the accelerator be-
fore executing the offloaded code. For example, NVIDIA
usually puts the GPUs into idle mode when they are not
used for either graphics rendering or general-purpose com-
putation. There is a small overhead in initializing the GPUs
to active mode. OpenACC provides an initialization rou-
tine, called acc init(), to activate the accelerator from idle
mode.

3.3.2 Data construct

OpenACC compiler takes care of data movement implic-
itly. Currently, GPU memory is not mapped into the host’s
virtual memory space. OpenACC provides data construct,
followed by data clauses to allocate device variables (cre-
ate), copy data from the host to the accelerator at region
entry and back to the host at region exit (copy), or only
copy data over from the host to the accelerator (copyin) or
reverse (copyout). The full list of data clauses can be found
in [1]. The following example illustrates the data construct:

#pragma acc data pcopyin(A[0:n])

{

structure block

}

The PGI compiler generates highly optimized CUDA code
which handles array A on the device side. The pcopyin

clause is an extension of copyin clause. The pcopyin is the
abbreviation of present or copyin, in which if A is not present
in the accelerator memory, A is allocated and copied from
the host to the accelerator at region entry, as with the copyin
clause. We do not have to specify the data type of A. Upon
the exit of the region, A is deallocated. This approach con-
trasts with verbose cudaMemcpy commands in CUDA. All
these procedures are performed automatically.

3.3.3 Accelerator Compute Constructs

There are two pragmas which help us to create a kernel.
We can use the parallel or the kernels pragma to annotate
independent loops. There are two significant differences be-
tween them; the parallel pragma creates only one CUDA
kernel, whereas the kernels pragma turns independent loops
inside it to kernels. The other difference between two con-
structs is the user-involvement in kernel scheduling. With
the kernels construct, the compiler is free to map iterations
to a parallelism level and choose an appropriate number of
threads and blocks. On the other hand, the parallel con-
struct allows the user to choose kernel scheduling manually.

#pragma acc parallel{

compute region

}

or

#pragma acc kernels{

compute region

}

A detailed discussion of parallel and kernels can be found
in PGI Insider[3].

4. OPENACC TANGENT-LINEAR CODE
In this section, we focus on OpenACC augmented tangent-

linear code. Firstly, we consider a class of problem, which
features data parallelism. The tangent-linear version of this
problem class is also a data parallelism problem. Secondly,
we propose OpenACC version for the tangent-linear version
of this problem class.
We consider a multivariate function in equation (2) in Sec-
tion 3.2. We assume that the problem class is a highly data-
parallel problem, in which each component of output vector
y can be calculated simultaneously. We have m independent
iterations which can be executed in parallel. A comparison
between the implementation of F and its tangent-linear is
discussed below:

Algorithm 1: Implementation of F .

Data: x
Result: y
for j ← 0 to m− 1 do

compute y[j];
end

In the tangent-linear version, the loop structure of the
program is the same as in the original implementation of F .
The tangent-linear version is built by augmenting auxiliary
variables to the function implementation as we discussed in
Section 3.1. Therefore, when the F implementation can be
executed in parallel, its tangent-linear can be executed in

29

Algorithm 2: The tangent-linear version of F .

Data: x, t1 x /*additional input t1_x */

Result: y, t1 y /*additional output t1_y */

for j ← 0 to m− 1 do

compute t1 y[j] and y[j]; /*derivative t1_y[j] */

end

parallel in the same way.
In order to offload a program with data parallelism to GPUs,
we need to clarify two requirements: data movement and
kernel scheduling.
Firstly, we need to identify variables, which need to be copied
over from host memory to device memory, or vice versa. We
achieve this requirement with the data pragma. In tangent-
linear model, apart from the input and output of the inde-
pendent loop, x and y, respectively, there are new input and
output variables, namely tangent variables t1 x and t1 y.
Secondly, we need to assign the loop to the hardware paral-
lelism level.
With NVIDIA GPUs, PGI compiler maps data parallelism
to two levels of hardware parallelism: threads and blocks.
In Algorithm 3, we use the parallel pragma to annotate the
following loop as a kernel. We use the loop pragma to inform
the compiler that this is an independent loop. Furthermore,
the vector data clause maps iterations to threads in GPUs.
Up to this point, the exact number of the GPU threads
that we use is still not defined. The PGI compiler will find
the appropriate resources to perform this kernel. The exact
number of blocks per grid and threads per block depends on
the availability of hardware, such as the number of required
registers per thread. For example, with NVIDIA Quadro
6000 there are 32768 registers per block. In our approach,
we trust the compiler to choose the best GPU resources.

Algorithm 3: OpenACC tangent-linear version

Data: x, t1 x
Result: y, t1 y
#pragma acc data copyin x and t1 x, copy y and t1 y

#pragma acc parallel
#pragma acc loop vector

for j ← 0 to m− 1 do
compute t1 y[j] and y[j];

end

For real-world problems which feature data parallelism,
we have different loop structures apart from the case above.
However, the tangent-linear version of these problems has
the same parallelism structure as in the original function
implementation. Therefore, when the function implemen-
tation is a data parallelism problem, we can parallelize the
corresponding tangent-linear version.
We will experiment with the OpenACC tangent-linear ver-
sion of a case study in the next section.

5. CASE STUDY
Given X ∈ R

n×p, a constant matrix A ∈ R
p×m and Y ∈

R
n×m

Y = F (X) : Rn×p → R
n×m that:

yi,j =















p
∑

k=1

(xi,k × ak,j) + sin(yi−1,j−1) if i, j > 1

p
∑

k=1

(xi,k × ak,j) if i = 1 ∨ j = 1

in which 1 ≤ i ≤ n and 1 ≤ j ≤ m
One possible implementation of Y = F (X) is shown in

Listing 1, in which the calculation of Y is decomposed into
two parts: matrix multiplication procedure, called g func-
tion and re-computation procedure of Y , called f function.
In Function g, each element of output matrix Y is a dot

1 void g(int n, int m, int p, double** x, →֒
←֓ double ** A, double** y)

#pragma ad indep x
3 #pragma ad dep y

{
5 int i = 0;

int j = 0;
7 int k = 0;

for (i = 0; i < n; i++){
9 for (j = 0; j < m; j++){

for (k = 0; k < p; k++){
11 y[i][j]=y[i][j]+ x[i][k]*A[k][j];

}
13 }

}
15 }

void f(int n, int m, int p, double** x, →֒
←֓ double ** A, double **y)

17 #pragma ad indep x
#pragma ad dep y

19 {
int i = 0;

21 int j = 0;
g(n, m, p, x, A, y);

23 for(i = 1; i < n; i ++){
for(j = 1; j < m; j++){

25 y[i][j]=y[i][j] + sin(y[i-1][j-1]) ;
}

27 }
}

Listing 1: Function implementation of casestudy

product of one vector, which is a row in X, and one vector,
which is a column in A. The calculation of each element in
Y is totally independent from the other elements. There-
fore, in g all elements of output matrix Y can be computed
simultaneously. In this analysis, two outer loops (line 8 and
line 9) can be parallelized easily. The inner-most loop (line
10) which performs the reduction of yi,j can be parallelized
but will not be further discussed in this paper.

In Function f, the values of each element in matrix Y ,
except those in the first row and the first column, are re-
computed using its current value and the left-hand side value
on its diagonal. Function f calls function g in line 22, before
re-computing matrix Y in line 25. Intuitively, the value
of one element depends not only on its current value but
also on the value of the previous on-diagonal element. This
paper will consider the two outer loops of f (line 23 and 24)

30

as dependent loops and will not try to parallelize them on
GPUs.

Our loop dependency analysis of g results in a possible
OpenACC version of g in Listing 2.

#pragma acc parallel →֒
←֓ pcopyin(x[0:n][0: p], A[0:p][0: m]) →֒
←֓ copy (y[0:n][0: m])

2 {
#pragma acc loop gang

4 for(i=0; i<n; i++){
#pragma acc loop vector

6 for(j=0; j<m; j++){
for(k=0; k<p; k++){

8 y[i][j] = y[i][j] + x[i][k] * →֒
←֓ A[k][j];

}
10 }

}
12 }

Listing 2: The OpenACC version of g

Two adjacent pragmas data and parallel can be combined
into one parallel pragma, where data movement is denoted
by data clauses. Data is copied into device memory with
pcopyin or copied to/from host memory with copy. The i

loop in line 4 is scheduled to grid, whilst the j loop in line 6
is scheduled to block.

The loop dependence analysis of f and g brings us a draft
view of the further step to porting tangent-linear code to
the GPUs. In our experiment, we use dcc-v1.0 to generate a
tangent-linear version of g, called t1 g. Base on the loop de-
pendency analysis of g, we know the loop structure of t1 g.
Then, we augment t1 g with OpenACC pragmas for our ex-
periment.
For explanation, we only introduce hand-written tangent-
linear code of g. The OpenACC dcc-generated tangent-
linear version t1 g acc and t1 f acc is present in Appendix.
Listing 3 shows the first OpenACC tangent-linear code while
Listing 4 optimizes data movement between host memory
and device memory.

#pragma acc parallel →֒
←֓ pcopyin(x[0:n][0: p], A[0:p][0: m], →֒
←֓ t1_x [0:n][0: p]) →֒
←֓ copy(y[0:n][0:m], t1_y[0:n][0:m])

2 {
#pragma acc loop gang

4 for(i=0; i<n; i++){
#pragma acc loop vector

6 for(j=0; j<m; j++){
for(k=0; k<p; k++){

8 t1_y [i][j] = t1_y [i][j] + →֒
←֓ t1_x [i][k] * A[k][j];

y[i][j] = y[i][j] + x[i][k] * →֒
←֓ A[k][j];

10 }
}

12 }
}

Listing 3: The first OpenACC tangent-linear version.
Zero matrices y and t1 y are copied over from host
memory to device memory via copy clause (line 1)

In our OpenACC tangent-linear version t1 g acc, y and t1 y

need not to be copied over from host memory to device mem-
ory. We would like these variables allocated and initialized

to zero in device memory. Unfortunately, at the moment
there is no OpenACC pragma or API which can help us
achieve this [4]. Therefore, we change the code manually for
efficiency. We allocate y and t1 y with the create pragma.
Then, we initialize them to zero inside the loop body.

1 #pragma acc parallel →֒
←֓ pcopyin (x[0:n][0: p], A[0:p][0:m], →֒
←֓ t1_x [0:n][0: p]) →֒
←֓ create(y[0:n][0:m], t1_y[0:n][0:m]) →֒
←֓ copyout(y[0:n][0:m], t1_y[0:n][0:m])

{
3 #pragma acc loop gang

for (i=0; i<n; i++) {
5 #pragma acc loop vector

for (j=0; j<m; j++) {

7 y[i][j]=0;

t1_y[i][j]=0;

9 for (k=0; k<p; k++) {
t1_y[i][j]= t1_y [i][j] + →֒

←֓ t1_x [i][k]*A[k][j];
11 y[i][j]=y[i][j] + x[i][k]*A[k][j];

}
13 }

}
15 }

Listing 4: Optimized OpenACC tangent-linear version
for efficient data movement. We allocate y and t1 y

in device memory via create clause (line 1). We later
initialize y and t1 y to zero inside kernel function as in
line 7 and 8

The optimized data movement helps us reduce unnecessary
data traffic between host and device memory. The following
table shows improvement in runtime performance.

Experimental
cases at device
memory

Copyin Kernel Copyout

Copy zero
matrices

40,890 µs 210,799 µs 16,420 µs

Initialization zero
matrices

24,498 µs 210,556 µs 16,501 µs

Table 2: Data clause profiling.

We profile runtime performance of kernel execution and data
movement for two cases with n = m = p = 1024. It is clear
that when we initialize matrices y and t1 y in device mem-
ory, we reduce the traffic over the PCI express bus between
device memory and host memory. This results in the copyin
time reduces to 41%.
With the optimized data movement in the tangent-linear
version, we determine how speedup varies with respect to
problem size in Algorithm 4.

We experiment with 27 cases, in which each parameter
takes one of three values 1024, 2048, and 4096. The speedup
is the ratio of CPU time to GPU time. The runtime per-
formance of the whole application t1 f and t1 f acc (see Ap-
pendix) is taken in account. The experiment is conducted
with Intel Xeon X5650 EP, GPU NVIDIA QUADRO 6000,
and OpenACC-supported PGI compiler (pgc++13.2).

31

1024
2048

4096 1024 2048 4096

1024

2048

4096

Innermost
loop size(p)

103

73

52

83

59

38

64

41

25

91

69

50

80

56

37

58

39

24

87

67

48

68

50

35

50

33

23

Outermost
loop size(n)

Inner
loop size(m)

Innermost
loop size(p)

20
30
40
50
60
70
80
90
100
110

Figure 1: Speedup vs loop size parameter.

Algorithm 4: Speedup measurement procedure.

Data: x, t1 x, A
Result: CPU and GPU Runtime, Speedup
seeding t1 x;
for i in 1024, 2048, 4096 do

for j in 1024, 2048, 4096 do

for k in 1024, 2048, 4096 do

profile t1 f on CPU;
profile t1 f acc on GPU;
y err = check(y, y acc);
t1 y err = check(t1 y, t1 y acc);
if y err or t1 y err then

exit(1);
else

calculate speedup;
write CPU time, GPU time, speedup to
file;

end

reset y, y acc, t1 y, t1 y acc;

end

end

end

The 4D plot in Figure 1 shows the relationship between
speedup and problem size. We achieve the best speedup
of 103x when n = m = p = 4096. When n = m = p = 1024,
we obtain the lowest speedup of 23x. The experiment shows
speedup is directly proportional to each loop size parameter.
There are two possibilities to create computationally inten-
sive code in the tangent-linear version t1 g. Firstly, we in-
crease n or m to put more loop iterations on GPUs. Sec-
ondly, we increase p to put more work on each j iteration.
In both cases, we achieve higher speedup when we increase
either n, m, or p. GPUs are suitable for computationally in-
tensive code. The intensive code is a loop with a big number
of independent iterations and huge workload in each itera-
tion.

50

60

70

80

90

100

110

1024 2048 4096

S
p
ee
d
u
p
(x
)

Parameters n, m, p

Speedup vs each loop size

n

87
91

103

m

64

83

103

p

52

73

103

Figure 2: Speedup vs different parameter n, m, and p.

32

In Figure 2, we find which loop size parameter influences
the speed up the most. Each loop size parameter increases
from 1024 to 4096. At each point, we record the highest
possible speedup. For example, when n = 1024, we have the
highest speedup of 87x, only when m = 4096 and p = 4096.
When p increases from 1024 and 4096, the highest speedup
increases from 52x to 103x respectively (approximately two
times). The speedup rises sharply as p increases in our case
study. In our case study, p is more important in driving the
speedup forward. This implies that if we put more workload
into each iteration, the speedup increases faster than in the
case where we increase the number of iterations.

6. CONCLUSIONS
Our case study has shown the simplicity of offloading com-

putationally intensive parts of tangent-linear code to the
GPUs with OpenACC. OpenACC hides data movement be-
tween the host memory and the device memory. We also
interpret the phrase ’computationally intensive code’ as an
independent loop with a huge number of iterations (thou-
sands or millions) and large amount of work in each itera-
tion.
One weak point of OpenACC is its lack of support for any de-
bugging tool. Compiler pgc++ version 13.2 does not provide
any debugging tool. Nevertheless, OpenACC is very promis-
ing not only for derivative programs but also for other sci-
entific programs which feature data parallelism. OpenACC
is expected to be integrated to OpenMP in the near future.
The initialization of variables in device memory is neces-
sary. From the case study, we expect OpenACC specifica-
tion should have pragmas which allow the user to initialize
data in device memory instead of copying over from host
memory.
This paper explored the possibility of offloading intensive
parts of tangent-linear code to GPUs. From our approach
and case study, we can infer that tangent-linear code retains
the same block structure as that of the original implemen-
tation of the function. The speedup of the parallel tangent-
linear code is directly proportional to the loop size parame-
ter. We aim to extend dcc to generate parallel tangent-linear
code on the GPUs.

7. ACKNOWLEDGEMENT
We would like to thank Ekkapot Charoenwanit for proof-

reading this paper many times. We would like to give special
thanks to the HPC team at RWTH Aachen University for
providing both GPUs hardware and commercial PGI com-
piler. This work was supported by grants from the German
Academic Exchange Service and the German Federal For-
eign Office.

8. REFERENCES

[1] The OpenACC
TM

Application Programming Interface
version 1.0, November 2011.

[2] M. Förster, U. Naumann, and J. Utke. Toward Adjoint
OpenMP. Technical Report AIB-2011-13, RWTH
Aachen, July 2011.

[3] T. P. Group. OpenACC Kernels and Parallel
Constructs. http://www.pgroup.com/lit/articles/
insider/v4n2a1.htm, August 2012. [Online; accessed
29-July-2013].

[4] T. P. Group. Userforum: Initialize global variables with
OpenACC pragma.
www.pgroup.com/userforum/viewtopic.php?t=3869,
May 2013. [Online; accessed 03-August-2013].

[5] B. T. Minh. Tangent-Linear and Adjoint GPU Code.
diploma thesis, The Sirindhorn International
Thai-German Graduate School of Engineering, King
Mongkut’s University of Technology North Bangkok,
May 2013.

[6] U. Naumann. The Art of Differentiating Computer
Programs: An Introduction to Algorithmic
Differentiation. SIAM, 2012.

33

APPENDIX

A. OPENACC TANGENT-LINEAR VERSION

OF F AND G FUNCTION

1 void t1_g_acc (int n, int m, int p, →֒
←֓ double ** x, double** t1_x , →֒
←֓ double ** A, double** y, double ** →֒
←֓ t1_y)

#pragma ad indep x t1_x
3 #pragma ad dep y t1_y

{
5 int i=0;

int j=0;
7 int k=0;

double v1_0 =0;
9 double t1_v1_0 =0;

double v1_1 =0;
11 double t1_v1_1 =0;

double v1_2 =0;
13 double t1_v1_2 =0;

double v1_3 =0;
15 double t1_v1_3 =0;

double v1_4 =0;
17 double t1_v1_4 =0;

#pragma acc parallel →֒
←֓ pcopyin(x[0:n][0: p], →֒
←֓ A[0:p][0: m], t1_x [0:n][0:p]) →֒
←֓ create(y[0:n][0: m], →֒
←֓ t1_y [0:n][0: m]) →֒
←֓ copyout(y[0:n][0: m], →֒
←֓ t1_y [0:n][0: m])

19 {
#pragma acc loop gang

21 for (i=0; i<n; i++) {
#pragma acc loop vector

23 for (j=0; j<m; j++) {
y[i][j] = 0;

25 t1_y [i][j] = 0;
for (k=0; k<p; k++) {

27 t1_v1_0 =t1_y [i][j];
v1_0 =y[i][j];

29 t1_v1_1 =t1_x [i][k];
v1_1 =x[i][k];

31 t1_v1_2 =0;
v1_2 =A[k][j];

33 t1_v1_3 =v1_2 *t1_v1_1;
v1_3 =v1_1 *v1_2 ;

35 t1_v1_4 =t1_v1_0+t1_v1_3;
v1_4 =v1_0 +v1_3 ;

37 t1_y [i][j]= t1_v1_4;
y[i][j]= v1_4 ;

39 }
}

41 }
}

43 }

Listing 5: The OpenACC tangent-linear version t1 g acc

In tangent-linear version of g, auxiliary variables from line 5
to line 17 are used to store intermediate values for derivative
computation. The auxiliary variables calculation is localized
to each thread from line 27 to line 36. These variables are
stored in register memory of GPUs for low latency access.
The OpenACC compiler has to choose the appropriate num-
ber of threads, number of blocks to fit the requirement of
number of needed registers per thread.

1 void t1_f_acc (int n, int m, int p, →֒
←֓ double ** x, double** t1_x , →֒
←֓ double ** A, double** y, double ** →֒
←֓ t1_y)

#pragma ad indep x t1_x
3 #pragma ad dep y t1_y

{
5 int i=0;

int j=0;
7 double v1_0 =0;

double t1_v1_0 =0;
9 double v1_1 =0;

double t1_v1_1 =0;
11 double v1_2 =0;

double t1_v1_2 =0;
13 double v1_3 =0;

double t1_v1_3 =0;
15 t1_g_acc (n,m,p,x,t1_x ,A,y,t1_y);

for (i=1; i<n; i++) {
17 for (j=1; j<m; j++) {

t1_v1_0=t1_y [i][j];
19 v1_0=y[i][j];

t1_v1_1=t1_y [i -1][j -1];
21 v1_1=y[i -1][j -1];

t1_v1_2=cos(v1_1)*t1_v1_1;
23 v1_2=sin(v1_1);

t1_v1_3=t1_v1_0 +t1_v1_2;
25 v1_3=v1_0 +v1_2 ;

t1_y[i][j]= t1_v1_3;
27 y[i][j]= v1_3 ;

}
29 }

}

Listing 6: The OpenACC tangent-linear version t1 f acc

The tangent-linear version of f is executed on the CPU side.
f calls parallel tangent-linear version t1 g acc in line 15.

34

