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ABSTRACT
Graph algorithms are becoming increasingly important for solving many problems

in scientific computing, data mining and other domains. As these problems grow in
scale, parallel computing resources are required to meet their computational and memory
requirements. Unfortunately, the algorithms, software, and hardware that have worked
well for developing mainstream parallel scientific applications are not necessarily effective
for large-scale graph problems. In this paper we present the inter-relationships between
graph problems, software, and parallel hardware in the current state of the art and discuss
how those issues present inherent challenges in solving large-scale graph problems. The
range of these challenges suggests a research agenda for the development of scalable
high-performance software for graph problems.

Keywords: Parallel architectures, graph algorithms, graph theory, multithreading, dis-
tributed memory, shortest paths

1. Introduction

Graphs provide a very flexible abstraction for describing relationships between
discrete objects. Many practical problems in scientific computing, data analysis
and other areas can be modeled in their essential form by graphs and solved with
appropriate graph algorithms. As graph problems grow larger in scale and more
ambitious in their complexity, they easily outgrow the computation and memory
capacities of single processors. Given the success of parallel computing in many ar-
eas of scientific computing, parallel processing appears to be necessary to overcome
the resource limitations of single processors in graph computations.

Applications perform and scale well when the overall computational problem-
solving approach is well balanced—that is, when the problem to be solved, the
algorithm used to solve it, the software used to express the algorithm and the hard-
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ware on which the software is run are all well-matched to each other. To a large
extent, the success of parallel scientific computing has been due to the fact that
these aspects are well-matched for typical scientific applications. Common idioms
for solving typical problems in scientific domains (which tend to involve solving
systems of partial differential equations) have evolved and become standard prac-
tice in the scientific computing community. Similarly, the hardware platforms and
programming models that work well for typical problems have also become com-
monplace. Machine rooms around the world contain commodity clusters running
codes programmed with MPI.

Unfortunately, the algorithms, software, and hardware that have worked well for
developing mainstream parallel scientific applications are not necessarily effective
for large-scale graph problems. Graph problems have some inherent character-
istics that make them poorly matched to current computational problem-solving
approaches. In particular, the following properties of graph problems present sig-
nificant challenges for efficient parallelism.

• Data-driven computations. Graph computations are often completely
data-driven. The computations performed by a graph algorithm are dictated
by the vertex and edge (node and link) structure of the graph on which it
is operating rather than being directly expressed in code. As a result, paral-
lelism based on partitioning of computation can be difficult to express because
the structure of computations in the algorithm is not known a priori.

• Unstructured problems. The data in graph problems are typically un-
structured and highly irregular. Similar to the difficulties encountered in
parallelizing a graph problem based on its computational structure, the ir-
regular structure of graph data makes it difficult to extract parallelism by
partitioning the problem data. Scalability can be quite limited by unbalanced
computational loads resulting from poorly partitioned data.

• Poor locality. Because graphs represent the relationships between entities
and because these relationships may be irregular and unstructured, the com-
putations and data access patterns tend not to have very much locality. This
is particularly true for graphs that come from data analysis. Performance in
contemporary processors is predicated upon exploiting locality. Thus, high
performance can be hard to obtain for graph algorithms, even on serial ma-
chines.

• High data access to computation ratio. Graph algorithms are often
based on exploring the structure of a graph in preference to performing large
numbers of computations on the graph data. As a result, there is a higher
ratio of data access to computation than for scientific computing applications.
Since these accesses tend to have a low amount of exploitable locality, runtime
can be dominated by the wait for memory fetches.

In this paper we discuss, from several perspectives, the impediments to high per-
formance graph implementations, and some of their possible solutions. In the next
section we briefly survey the landscape of high performance architectures. In §3 we
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discuss how these different architectures map onto the needs of graph algorithms.
In §4 we review some ongoing activities to develop parallel graph software. Then
in §5 we report on some performance results on different architectures. We then
discuss some possible architectural trends that may impact graph algorithm perfor-
mance in §6, and suggest some areas for further work in §7.

2. Parallel Architectures & Programming Models

An assortment of different parallel computers with varying capabilities are com-
mercially available. Most machines are built out of traditional microprocessors,
with several layers of hierarchical memory. Fast memory is used to store values
from memory addresses that are likely to be accessed soon, thereby reducing la-
tency. For many applications, this is a very effective way to improve performance,
but as we will argue in §3, it is not particularly effective for operations on unstruc-
tured graphs. These applications tend to be highly latency dominated and often
obtain extremely low utilization on traditional microprocessors [16,17].

2.1. Distributed memory machines

The most widespread class of parallel machines are distributed memory comput-
ers. These machines are usually made predominantly of commodity parts, consisting
merely of a set of processors and memory connected by some high speed network.
The commodity nature of these machines makes them inexpensive, and they are very
effective on many scientific problems and on problems that are trivially parallel.

Distributed memory machines are most commonly programmed by explicit mes-
sage passing. In this programming model, the user is responsible for dividing the
data up among the memories of the different processors and for determining which
processor performs which tasks. Typically, an owner-computes model is used in
which the processor that owns data also performs any operations on that data.
Data are exchanged between processors by user-controlled messages, usually with
the MPI communication library [14]. As the details of the computation and commu-
nication are almost completely in the user’s hands, many applications can achieve
high performance this way. However, the detailed control of data partitioning and
communication can be tedious and error prone.

In addition to making use of a memory hierarchy, message passing programs
often reduce latency by amortization. Typically, programs are written in a Bulk-
Synchronous style, in which processors alternate between working independently
on local data, and participating in collective communication operations [20]. By
grouping data exchanges into large, collective operations, the overall latency cost is
substantially reduced. However, this comes at the expense of algorithmic flexibility.
Data cannot be transmitted on demand, but only at the pauses between computa-
tional steps. This can be deleterious for load balancing, and makes it difficult to
exploit fine-grained parallelism in an application.

In principle, message passing programs need not be bulk synchronous. Asyn-
chronous messages can be interleaved with computation in an arbitrary manner.
However, most versions of MPI are optimized for two-sided communication in which
sends and receives must be paired (i.e., it is not possible to write to or read from



Parallel Processing Letters

another processor’s memory without the program on that processor being involved).
Without more efficient support for one-sided communication, distributed memory
machines are not well suited to fine-grained parallelism.

2.2. Partitioned global address space computing

MPI is not the only way to program distributed memory parallel computers.
An important alternative, that is better suited to fine-grained parallelism, is to
use a partitioned global address space language such as by UPC [6]. In a UPC
program, the programmer is still responsible for distinguishing between local and
global data, but the language supports operations on remote memory locations with
simple syntax. This support for a global address space facilitates writing programs
with complex data access patterns. UPC sits on top of a communication layer that
supports one-sided communication. Thus, fine-grained parallel programs are easier
to write and can achieve higher performance than with MPI. However, as with MPI,
in a UPC program the number of threads of control is constant, generally equal to
the number of processors. As we argue below, the lack of dynamic threads is a
significant impediment to the development of high performing graph software.

2.3. Shared-memory computers

UPC provides a software illusion of globally addressable memory on distributed
memory hardware. Support for a global address space can also be provided in
hardware. Such shared memory computers can be categorized in various ways.
Here we consider cache-coherent machines and massively multithreaded machines.

2.3.1. Cache-coherent parallel computers

In symmetric multiprocessors (SMPs), global memory is universally accessible by
each processor. UPC can be used to program these machines, but the most common
approach is OpenMP [5], or a threading approach like POSIX threads [18]. The key
feature of an SMP is that it provides hardware support for access to addresses in
global memory, so any address in the machine can be retrieved directly and relatively
quickly. As a result, highly unstructured problems may achieve higher performance
than is possible on distributed memory machines. Thus, SMPs essentially address
the latency challenge with faster hardware for accessing memory. However, SMPs
have some inherent performance limitations.

As discussed above, most processors have a memory hierarchy in which a small
amount of data is kept in faster memory, or cache, for quick access. When a datum
is updated, the new value may not be immediately propagated to main memory,
but may instead reside only in cache for a while. When only a single processor is
involved, it is not difficult to ensure that a read operation gets the most current
value. But in a multiprocessor machine with multiple caches, the cache-coherence
problem is a significant challenge. There are a variety of methods to address this
problem, each with its advantages and disadvantages. However, each such approach
adds overhead which can degrade performance. Even for problems in which reads
are much more prevalent than writes, cache coherence protocols have an impact on
scalability.
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A second performance challenge in SMPs is the protocol for thread synchro-
nization and scheduling. If several threads are trying to access the same region of
memory, the system must apply some protocol to ensure correct program execution.
As a result, some threads may be blocked for a period of time. Current versions
of OpenMP require the number of threads to equal the number of processors, so a
blocked thread corresponds to an idle processor. A more dynamic threading model
may appear in future versions of OpenMP.

2.3.2. Massively multithreaded architectures

The massively multithreaded Cray MTA-2 [2] addresses the latency challenge
in a substantially different manner than other architectures. Instead of trying to
reduce the latency of single memory access, the MTA-2 tries to tolerate latency by
ensuring that a processor has other work to do while waiting for a memory request
to be satisfied. Each processor can have a large number of outstanding memory
requests. The processor has hardware support for many concurrent threads and is
able to switch between them in a single clock cycle. Thus, when a memory request is
issued, the processor can immediately switch its attention to another thread whose
memory request has arrived. In this way, the processor tolerates latency and is not
stalled waiting for memory, given sufficient concurrency.

This execution model depends upon the availability of a large number of threads
to keep the processor occupied. As we will discuss in §3, many graph algorithms
can be written in a thread-rich style. However, with a large number of threads,
the likelihood of access contention increases. The MTA-2 addresses this problem
by supporting word-level synchronization primitives. Each word of memory can be
locked independently. Thus, locks have a minimal impact on the execution of other
threads.

Another unusual feature of the MTA-2 is its support for fast and dynamic thread
creation and destruction. The programmer need not limit the program to a fixed
degree of parallelism, but can instead let the data determine the number of threads.
The MTA-2 supports a virtualization of threads, which it then maps onto physical
thread processing elements called streams. This facilitates adaptive parallelism and
dynamic load balancing.

Although conceptually attractive, massively multithreaded machines also have
significant drawbacks. Because the processors are custom and not commodity, they
are more expensive and have a much slower clock than mainstream microprocessors.
Furthermore, the programming model of the MTA-2, while simple and elegant, is
non-standard. The combination of high cost, non-standard programming model,
and lower peak performance numbers for compute-bound computations have ap-
parently precluded commercial success for the MTA-2. However, the machine’s
unique ability to handle large-scale graph informatics problems has given rise to a
successor: the XMT (formerly called Eldorado) [7]. This new architecture combines
MTA processors with commodity networks augmented to support shared memory.
The predicted scalability of graph codes on the XMT is discussed in [19], which
provides evidence that MTA-like scaling may be possible through at least 512 pro-
cessors. The XMT can be built with up to 8192 processors. Cray also intends to
include massive multithreading in its heterogeneous architectures of the future.
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3. Mapping Parallel Graph Algorithms to Hardware

Although numerous theoretical papers have been written on parallel graph al-
gorithms, many using the PRAM model [12], there are far fewer papers describing
actual implementations or libraries. High performance parallel graph algorithms
have proven to be difficult to develop, and a number of hardware and software
related challenges must be addressed.

• Task granularity. A fundamental question in designing a graph algorithm
is where to introduce parallelism. For some algorithms, there is a significant
degree of coarse-grained parallelism. For example, some centrality computa-
tions involve solving many shortest path problems. Each shortest path prob-
lem could be a separate task. However for most graph operations, particularly
those with linear or near linear runtime, parallelism can only be found on a
more fine-grained level. Machines that facilitate fine-grained parallelism will
be better suited to running such algorithms.

• Memory contention. In systems which support a global address space, mul-
tiple processes or threads can try to simultaneously access the same memory.
This can significantly reduce performance. The importance of this problem
grows with increasing degrees of parallelism and is therefore most acute for
multithreaded systems. Conveniently, for many applications in informatics,
the graph can be considered to be a read-only object, and read-only contention
is less problematic. A graph query algorithm will not write to the graph itself,
but it will allocate and write to its own local data structures and contention
must be carefully handled for these operations.

• Load balancing. The vertices being visited in a graph algorithm may have
some spatial locality in global memory. In an owner-computes model, this
means that some processors will have more work to do than others. Methods
for reassigning this work may improve performance. Note that this issue is
less pronounced on shared-memory machines because work can be migrated
without explicitly moving data. Temporal aspects of load balance can also
be important. A single graph algorithm might have a time-varying amount
of work to do. For example, in breadth-first search, early stages may have
few vertices to visit, while later stages may have significantly more. Dynamic
thread creation and assignment is one mechanism for dealing with varying
workloads.

• Simultaneous queries. In some data mining applications, a large graph
may be used by a team of analysts, and each may be submitting queries at
any time. This provides the potential for an additional degree of parallelism.
In such a setting, a system that gracefully and efficiently handles streams of
queries is highly preferable to one that can only respond to a single query
at a time. In contrast, virtually all of the literature is concerned with the
time required to perform a single graph algorithm. A better model would
focus on throughput, rewarding systems that can work on multiple queries
simultaneously.



Challenges in Parallel Graph Processing

• Software development. Solutions to many of the challenges alluded to
above can, and should, be encapsulated within a carefully architected software
framework. Software design issues will be addressed more completely in §4,
but flexibility, extensibility, portability and maintainability are all important
considerations. As informatics applications often involve iterative algorithmic
exploration, the software should also support rapid prototyping.

In the following sub-sections we discuss these issues with respect to mapping
graph algorithms to particular classes of parallel hardware.

3.1. Distributed-memory architectures

For many of the issues related to parallel graph algorithms, distributed-memory,
message-passing machines have problems. They are the least amenable to fine-
grained parallelism, and the most complex platform on which to perform dynamic
load balancing. They are also the most challenging architectures upon which to
build a simultaneous query processing system. On the other hand, the principal
appeal of message passing machines is that they are ubiquitous and comparatively
inexpensive. Code written in MPI will run on almost all parallel platforms.

Distributed memory requires that the edges and vertices of a graph be parti-
tioned among processors. If a processor owns a vertex, it needs to have a mechanism
for finding that vertex’s neighbors. One method for doing this that is widely em-
ployed in scientific applications is to keep a local data structure with information
about all the vertices that are adjacent to the vertices local to a process. Keeping
information about these ghost vertices works well for applications in which the graph
can be partitioned in such a way that few edges cross between processors, and such
graphs predominate in scientific applications. However, for less structured graphs
like those common in informatics applications, the set of adjacent vertices can be
much larger than the number of local vertices. Thus, the use of ghost vertices can
have a seriously detrimental impact upon memory usage. Even with ghost vertices,
the total amount of memory required should be proportional to the number of edges
in the graph. But for a fixed amount of space, a shared memory approach will allow
for the storage of a larger graph than distributed memory due to the (potentially
quite large) storage impact of ghost vertices. In addition, high-degree vertices cause
problems in distributed memory, as they may overwhelm the memory available on
a single processor.

An alternative to ghost cells is to use a hashing scheme to assign vertices to
processors. Although hashing can result in memory savings compared to ghost
cells, it can incur significant computational overhead.

3.2. Partitioned global address space computing

Partitioned global address space languages provide a global address space com-
puting model while running on inexpensive, distributed memory hardware. The
global address space obviates the need for ghost cells, and facilitates finer grained
parallelism and dynamic load balancing. Latencies are reduced by one-sided com-
munication.
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However, this approach is not a panacea. Performance can be very sensitive to
data layout, since the graph remains partitioned and non-local accesses are expen-
sive. Also, UPC remains a boutique language with limited support and portability.

3.3. Cache-coherent, shared-memory computers

SMPs retain the advantages of partitioned global address space computing, but
since they provide hardware support for global accesses, they have lower latencies.
However, with only a single application thread per processor and complex memory
access patterns, the processor will frequently stall while waiting for memory. The
highly unstructured access patterns associated with complex graphs means that
cache is of limited value, yet the cost of cache-coherence cannot be avoided. This
problem is partially mitigated if the graph is read-only. Nonetheless, contention-
prone accesses to local data structures need to be handled carefully. SMPs lack
the word-level synchronization primitive provided by massively multithreaded ma-
chines, so scalability limits due to contention will be more substantial. Economically
speaking, SMPs are significantly more expensive than distributed memory machines
on a per-processor basis.

3.4. Massively multithreaded machines

Massively multithreaded machines are conceptually attractive for graph algo-
rithms for a variety of reasons. They can support both coarse and fine-grained
parallelism. They facilitate light-weight load-balancing and simultaneous queries.
They provide a global address space without the complexity and performance cost
of cache-coherence. The ability to dynamically adjust the degree of parallelism is
very convenient for expressing algorithms, particularly for applications like graph
algorithms in which the parallelism is data dependent and difficult to predict prior
to runtime.

As with all the other global address space approaches, care must be taken to
ensure that algorithms are written in a thread-safe manner. The principal additional
challenge of massively multithreaded algorithms is that the number of threads can
be much larger than the number of processors, and so memory contention issues are
more significant. As a result, careful attention to algorithms and data structures is
required.

Since current massively multithreaded machines are not mainstream, they are
comparatively expensive and have slower clock speeds than machines built with
commodity processors. As we discuss in §6, there is some possibility that this will
change in the future, but for now the uncertain future of this architecture makes
any commitment to massively multithreaded software risky.

4. Software Approaches

4.1. Parallel Boost Graph Library

The Parallel Boost Graph Library (Parallel BGL) [10,9] is a library of parallel
graph algorithms and accompanying data structures. Designed using the Generic
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Programming paradigm, the Parallel BGL separates the implementation of parallel
algorithms from the underlying data structures and communication mechanisms.
Thus, the implementation of a given generic algorithm within the Parallel BGL—
say, a breadth-first search—can operate on any graph data structure and commu-
nicate over any communication medium so long as the data structure and medium
meet certain essential abstract requirements.

By abstracting away the reliance on a particular communication medium, the
same algorithm in the Parallel BGL can execute on distributed-memory clusters
using MPI (relying on message passing for communication) or SMPs using Pthreads
(relying on shared memory and locking for communication). Thus, architecture-
specific optimizations (such as the introduction of lock-free data structures or MPI
one-sided communication) can be separated from the algorithm description, greatly
easing the process of porting to and tuning for a new parallel-computer architecture.

Generic algorithms in the Parallel BGL place as few requirements on the commu-
nication infrastructure as possible, to permit maximum reusability. However, there
exist certain algorithms for which the optimal implementations vary widely from
one architecture to the next. In these cases, multiple algorithm implementations
may be required to account for radical differences in architecture, such as the dis-
tinction between course-grained parallelism that performs well on clusters and some
SMPs and fine-grained parallelism that performs well on massively multi-threaded
architectures like the MTA-2. The vast majority of the development effort for the
Parallel BGL has focused on course-grained parallelism using MPI, although in the
future we intend to branch out to other models of parallelism.

4.2. Multi-Threaded Graph Library

The simple programming model of the MTA-2 and XMT machines is well-suited
for the Generic Programming paradigm in principle. However, software library de-
velopment efforts on these platforms are in their infancy. For example, the C++
Standard Template Library (STL) is available, but it runs in serial. Massively
multithreaded codes are only useful with sufficient parallelism. Thread-safe ver-
sions of STL and its Boost extensions, which would provide the foundation for a
Multithreaded Boost Graph Library, are future work.

The MultiThreaded Graph Library [4], inspired by the serial Boost Graph Li-
brary, is being developed at Sandia National Laboratories to provide a near-term
generic programming capability for implementing graph algorithms on massively
multithreaded machines. Like the Parallel BGL, underlying data structures are
leveraged to abstract parallelism away from the programmer. However, unlike the
Parallel BGL, the primary algorithm design methodology is not to provide par-
allelized data structures for serial graph algorithms. The key to performance on
MTA/XMT machines is keeping processors busy, and in practice this often reduces
to performing many communicating, asynchronous, fine-grained tasks concurrently.
The MTGL provides a flexible engine to control this style of parallelism.

The MTGL was developed to facilitate data mining on semantic graphs, i.e.,
graphs with vertex and edge types. Semantic graph computations involve extensive
use of filters during graph searches. The MTGL provides mechanisms for these
filtering operations. Furthermore, the XMT usage model will allow many users to
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run algorithms concurrently on the same graph. The MTGL is designed to support
this usage model.

5. Performance

Preliminary performance evaluations for parallel graph algorithms on various
architectures illustrate some of the trade-offs in the design and implementation of
parallel graph algorithms. We consider two similar graph problems: unweighted
s− t shortest paths, which determines the shortest path from an arbitrary vertex s
to another vertex t in an unweighted graph, and single-source shortest paths, which
determines the shortest path from an arbitrary vertex s to every other vertex in a
graph with arbitrary, non-negative edge weights.

We report results for distributed memory runs of the Parallel Boost Graph Li-
brary [9] implementation on the Odin cluster at Indiana University, a 128-node
cluster where each node contained two 2.0GHz AMD Opteron processors connected
via Infiniband. The Parallel BGL tests were compiled with the Intel compiler ver-
sion 9.0 with flags -O3 -xW -tpp7 -i dynamic -fno-alias, the Parallel BGL 0.6.0
beta, and Open MPI 1.2 beta 3 [8].

Our MTA-2 implementation are the C codes of [13] (not MTGL), and our results
were gathered on a 40-processor MTA-2 system with 160GB uniform shared mem-
ory, where each processor has a clock speed of 220Mhz. The MTA-2 benchmarks
were compiled with the MTA-2 C compiler (Cray Programming Environment 2.0.3)
with the flag -par.

5.1. s− t Shortest Paths

The s−t shortest paths problem is essentially a bidirectional breadth-first search,
with one search originating at the source and the other at the target. When the
two searches collide at a vertex, a path from s to t has been found. Figure 1
illustrates the performance of the two different implementations of this algorithm
on Erdös-Renyi random graphs of two different sizes. The MTA-2 implementation
is described in [3]. In addition, we present results from CompNets [21], another
distributed-memory parallel implementation of s− t shortest paths using MPI. The
CompNets results were gathered on a 128-node cluster, where each node contained
two 3.06GHz Xeon processors connected by Myrinet.

Figure 1a shows the performance of the three implementations on random graphs
with 225 vertices and 228 edges. CompNets and the MTA-2 show some scaling, but
with these relatively small graphs, none of the implementations scale particularly
well. Figure 1b shows performance results for much larger graphs, with 227 vertices
and 230 edges. On graphs of this size, the Parallel BGL requires at least 20 compute
nodes to store the graph and algorithm-specific data structures, while the shared-
memory MTA-2 can store and process the graph for any number of processors. The
MTA-2 shows excellent scalability on this problem, achieving a speedup of 25 on 40
processors. The Parallel BGL, while solving the same problem two to three times
faster than the MTA-2, begins scaling inversely after 32 processors.

The s − t shortest paths problem has somewhat unique performance charac-
teristics because a typical s − t path query only touches a small portion of the
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Figure 1: Performance of the s − t shortest paths implementations for distributed
memory and the MTA-2 on random graphs.

graph. With the graphs in Figure 1, the queries only touched about 80,000 vertices
(< 0.06% of the graph). Thus, despite the large graph size, there is only a small
amount of work being performed by each processor. The good raw performance of
the Parallel BGL implementation was assisted by improved memory locality due
to a compressed representation of the primary bookkeeping data structure. This
improves microprocessor utilization relative to a näıve implementation.

However, the small number of touched vertices in this problem negatively im-
pacts the scalability of the Parallel BGL implementation. As additional processors
are introduced, the time spent managing ghost cells and synchronizing communica-
tion among the processors increases. As a result, this overhead becomes comparable
to the actual computation of interest because the local computation is so small. On
the other hand, the MTA-2’s use of fine-grained parallelism ensures that the work-
load is balanced among all of the MTA-2’s processors. Thus, even when only a
small portion of the graph is accessed, the MTA-2 shows excellent scalability.

Although both CompNets and the Parallel BGL are MPI-based implementations
of s−t shortest paths, their approaches to solving graph problems are quite different.
CompNets pays careful attention to memory scalability: the size of communication
buffers remains constant even as the graph size grows, and CompNets does not use
ghost cells, for which the memory requirements would typically increase both with
the graph size and the number of processors. By focusing on memory scalability,
Yoo et al. were able to solve the s− t shortest paths problem on a graph with 4B
vertices and 20B edges in 1.5 seconds using 32,768 processors of Blue Gene/L [21].
The Parallel BGL, on the other hand, makes heavy use of ghost cells, which can
drastically improve performance: on 100 nodes of the Odin cluster, the Parallel BGL
solved the s−t shortest paths problem for the same graph in 0.43 seconds. Figure 1a
also shows how ghost cells result in improved performance on small graphs. The
use of ghost cells comes at a cost, however: the amount of memory required for a
given computation depends heavily on the structure and size of the graph itself, and
may easily grow large enough to exhaust local memory. There are many trade-offs
in the design of distributed-memory parallel graph algorithms, with CompNets and
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the Parallel BGL having taken different stances regarding memory scalability and
the use of ghost cells.

5.2. Single-Source Shortest Paths

We report on two different parallel implementations of the ∆-stepping algo-
rithm [15] for single-source shortest paths with non-negative edge weights. ∆-
stepping is a variant of Dijkstra’s algorithm, wherein the priority queue of Dijkstra’s
algorithm is replaced with an approximate bucket structure. The bucket structure
is an array of buckets in which the ith bucket contains all vertices whose tenta-
tive distance from the source is in the range [i∆, (i + 1)∆), where ∆ is a positive
real number. Parallelization of the ∆-stepping algorithm involves relaxing outgo-
ing edges from all of the vertices in the current bucket simultaneously (potentially
causing re-insertions into that bucket). Edges are classified into light edges (those
with weights ≤ ∆) and heavy edges (those with weights > ∆). By relaxing the light
edges (those that can cause re-insertion) first, the algorithm ensures that the work
of relaxing heavy edges need only occur once.

Figure 2 illustrates the performance of the MTA-2 and Parallel BGL implemen-
tations of ∆-stepping on a random graph with n = 228 vertices and m = 230 edges.
The MTA-2 implementation of ∆-stepping is described in [13]. The Parallel BGL
implementation is a direct translation of the distributed-memory formulation of the
∆-stepping algorithm [15]. Following the experimental study on ∆ values for the
MTA-2 implementation in [13], both implementations normalize edge weights in
[0, 1) and let ∆ = n/m = 0.25.

Both implementations of ∆-stepping scale extremely well on this problem. For
equivalent performance, the Opteron implementation requires about 10 times as
many processors as the MTA-2 implementation. This result, combined with the
disparity in clock rates between the MTA-2 and Opteron processors, illustrates
that the MTA-2 is achieving a much higher processor utilization than the Opterons,
owing to its support for latency tolerance. On the other hand, while clusters with
thousands of processors are becoming commonplace, the largest MTA-2 ever built
contains only 40 processors (although future XMT machines may be significantly
larger).

Figure 3 illustrates the performance of the MTA-2 implementation of ∆-stepping
on two different graph classes, Erdös-Renyi random graphs and scale-free graphs,
which have significantly different properties. Both graphs have 228 vertices and 230

edges. While the edges in a random graph tend to be evenly distributed throughout,
the distribution of edges in a scale-free graph follows a power law, e.g., few vertices
have a very high degree whereas the vast majority of vertices have a very low degree.
With distributed-memory implementations, these imbalances have an impact both
on performance (relaxing edges for high-degree vertices requires much more work
than for low-degree vertices) and on the ability to solve certain problems (since
memory utilization can vary widely from one compute node to another). With the
fine-grained parallelism and shared address space of the MTA-2, the performance
of the ∆-stepping algorithm is nearly identical from one graph class to another.
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Figure 2: Performance of the ∆-stepping implementations for distributed memory
and the MTA-2 on random graphs with 228 vertices and 230 edges.

6. Looking Forward

Several hardware trends can be discerned that will likely have an impact upon
high performance graph capabilities in the near future.

The Cray XMT (formerly called Eldorado) computer is a follow-on to the MTA-
2 [7]. The introduction of the XMT may make massively multithreaded architec-
tures more widely available for further study. The XMT processors are similar
to their MTA-2 counterparts, but with a 500MHz clock rate. Although the XMT
network will be lower performing than that of the MTA-2, its 3D mesh/torus in-
terconnect will allow for the construction of larger machines. Bandwidth will be
reduced, latency will increase, and with a poorer communication to computation
ratio, it will be harder to achieve peak performance on the XMT than on the MTA-
2. However, the XMT is far more economical that the MTA-2, and its ability to
scale to 8000 processors and 128TB of memory makes it feasible for very large data.
Unlike the MTA-2, an XMT processor can access local memory more quickly than
remote memory. Even without taking advantage of this opportunity to exploit lo-
cality, performance simulations for the XMT indicate that a 512-processor XMT
should be around 50% efficient on memory-intensive graph operations [4]. Local-
ity management techniques borrowed from current distributed-memory approaches
should help to achieve better efficiencies and to scale up to the XMT’s full com-
plement of processors. In addition, Cray’s plans for future heterogeneous machines
with multithreaded processors will make massive multithreading a more mainstream
technology for the high performance computing community.
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Figure 3: : Performance of the MTA-2 implementation of ∆-stepping on scale-free
and random graphs with 228 vertices and 230 edges.

A broader trend in the architecture community is the coming ubiquity of mul-
ticore processors. Two and four core processors are common now, and many more,
perhaps hundreds, will likely be available in the future. The impact of multicore
technology will depend upon the manner in which certain technical issues are re-
solved. Bandwidth and latency for memory accesses will continue to be important
factors in graph algorithm performance. Multicore chips may also motivate greater
interest in multithreaded technology, which should allow techniques from the MTA
to be leveraged to improve the efficiency of graph computations on all platforms.

In distributed-memory architectures, one-sided communication protocols are be-
coming widely available in both hardware (e.g., Infiniband’s RDMA support) and
in software (e.g., various MPI implementations support the MPI-2 one-sided oper-
ations [11]), which may help reduce latency within distributed graph applications.
Advances in distributed shared memory systems (e.g., [1]) may make it possible to
implement efficient parallel graph algorithms in distributed memory with less effort
than today’s approaches based on explicit message passing programming.

Further ahead, processor-in-memory (PIM) technology may prove to be impor-
tant for graph algorithms. With PIM, the processor and memory are manufactured
together, so a processor can access near-by memory very quickly. PIM machines can
be very fast if computations on memory are performed by nearby processors. In a
PIM system, threads will travel to processors that are near the memory the thread
uses. Since threads for graph operations tend to be small, and thread migration
is an efficient, unidirectional process, PIM machines have the potential to reduce
latency and bandwidth challenges for graph algorithms.
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7. Conclusion

Large graphs are finding increasing applications in computational biology, un-
structured mesh computations, and data analyses of many sorts. We foresee a
growing need for high-performance solutions to graph problems. As we have argued,
the computational requirements of graph algorithms are significantly different from
those of most existing parallel applications, and these differences have consequences
for architectures, software libraries and algorithm development.

Much research remains to be done in parallel graph algorithms and software.
Although ubiquitous and inexpensive, distributed memory machines are a challeng-
ing platform for graph algorithms. Efforts like the Parallel BGL have shown that
many graph algorithms can be parallelized on these platforms, but the processor
utilization is often low. In distributed memory, a fundamental tension exists be-
tween using ghost cells for optimizing runtime and hashing for optimizing memory
usage. New, perhaps hybrid, ideas are needed. One possibility would be to build
upon the work of Yoo, et al. using matrix-based insights to parallelize breadth-first
traversals [21]. Methods for unifying the expression of algorithms across different
architectures would also be very beneficial. Further work on distributed memory
algorithms and software is needed.

Massive multithreading looks to be an attractive approach for parallelizing graph
operations, with the potential for excellent scalability and performance. But this
work is really in its infancy and requires new algorithms and improved software.
Furthermore, the commercial viability of MTA-like machines is uncertain, which
adds risk to this approach.

Despite the significant challenges that graphs pose for parallel machines, we are
generally optimistic about the future. The ever-increasing cost of memory access
relative to processor speed means that more and more applications are becoming
latency dominated. We expect this to result in architectural changes that will be
advantageous to graph algorithms. Thanks to Moore’s Law, processors have now
become small enough that several of them can fit on a chip. We expect the sudden
availability of silicon real estate to foster renewed research in methods to improve
memory performance, including new forms of multithreading. We are hopeful that
our experience with graph algorithms will help motivate the development of tech-
nologies that will be of benefit to a broad range of applications.
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